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ABSTRACT

Fine-Grained Topic Models Using Anchor Words

Jeffrey A. Lund
Department of Computer Science, BYU

Doctor of Philosophy

Topic modeling is an effective tool for analyzing the thematic content of large collections
of text. However, traditional probabilistic topic modeling is limited to a small number of
topics (typically no more than hundreds). We introduce fine-grained topic models, which have
large numbers of nuanced and specific topics. We demonstrate that fine-grained topic models
enable use cases not currently possible with current topic modeling techniques, including an
automatic cross-referencing task in which short passages of text are linked to other topically
related passages. We do so by leveraging anchor methods, a recent class of topic model based
on non-negative matrix factorization in which each topic is anchored by a single word. We
explore extensions of the anchor algorithm, including tandem anchors, which relaxes the
restriction that anchors be formed of single words. By doing so, we are able to produce
anchor-based topic models with thousands of fine-grained topics. We also develop metrics for
evaluating token level topic assignments and use those metrics to improve the accuracy of
fine-grained topic models.

Keywords: topic modeling, anchor words, cross-reference generation
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Introduction

We introduce the concept of fine-grained topic modeling, describing several problems

which could be solved with such an analysis. We also give a brief overview of existing topic

modeling literature, and explain why current techniques are inadaquate for use cases which

require fine-grained topical analysis.
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Chapter 1

Introduction and Overview

1.1 Motivation

The rate at which we produce new digital text is rapidly increasing. The internet has enabled

the layperson to easily distribute text in the form of emails, blog posts, social media posts,

and websites. Even traditional media such as books and newspapers are increasingly being

published in digital form. Given this incredible volume of text, it is impossible for humans

to analyze even a fraction of it without the aid of computers, and there now exists a huge

variety of machine learning algorithms which aid in natural language processing and facilitate

deeper understanding of large collections of text.

In this dissertation, we focus on problems which can be solved with a nuanced

understanding of the topical content of individual documents. For example, with a fine-

grained topical understanding of a collection of text, we could find small sets of topically

related documents and sentences, or we could predict document metadata using fine-grained

topical information. These types problems go beyond information retrieval or simple word

concordances in which we look for similar words across the data. Instead we seek to give

users a deep topical understanding of individual documents, regardless of whether or not the

exact same words are used.

Topic modeling is a well known technique for analyzing documents by their topical

content [13]. Topic model output typically includes both topics in the form of topic-word

distributions, as well as assignments attributing individual word to a particular topic. Topic

models have found a wide variety of applications including document classification [15, 96],
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document clustering [111, 125], sentiment analysis [106], information retrieval [115], author

identification [95], and more. Topic models are often used to facilitate exploratory analysis by

presenting users with various visualizations of the resulting topics [26, 39]. Additionally, topic

modeling can be viewed as a dimensionality reduction, with the per-token topic assignments

serving as features for downstream tasks such as text classification [16, 96].

However, as we will discuss further in Section 1.2, traditional probabilistic topic models

result models with relatively few topics. Even when the number of topics is increased, the

topic distribution is not uniform across the data but is instead skewed towards a small set of

topics with the excess topics remaining unused by the model [113]. While these coarse topics

work well for giving a glimpse of the high-level topical content of a dataset as a whole, it is less

effective when we want to topically examine individual documents or sentences. For example,

if we used document-topic distributions learned using Latent Dirichlet Allocation [16] to find

a handful of documents which are most topically related to a single target document in even a

moderately sized dataset, we would still need to manually sift through many documents, since

each topic must explain hundreds or even thousands of documents. For deeper understanding

of individual documents, we require topic modeling algorithms which allow for large numbers

of fine-grained topics.

As a solution to problems which require a more nuanced topical understanding of the

text, we introduce the idea of fine-grained topic modeling. For such an analysis, we require

two things: first we need a topic model with large numbers of topics which are nuanced

and specific to small sets of documents or sentences in a dataset. Second, we need a way to

correctly assign individual tokens to the various topics, or else the larger numbers of nuanced

topics will become less useful when applied to individual documents or sentences.

As an illustration of the difference between traditional coarse-grained topic model

output and fine-grained topic model output, consider Table 1.1, which shows topics trained on

roughly 40,000 Amazon product reviews. The coarse-grained topics are from a model trained

with 40 topics using Latent Dirichlet Allocation, while the fine-grained topics are from a
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Coarse-grained Topics

monitor baby hear work static recommend room house clear channel
cable hdmi work price buy quality expensive tv monster cheap
gps garmin turn name street easy unit map direction feature
battery charger charge recharge work time life 4 good long
camera bag lenses backpack canon fit price carry lot lens
mp3 player music easy song good sound sansa battery media

Fine-grained Topics

live city york interfere find nyc channel chicago area pretty
headphone sound noise comfort great cancel hear ear product price
time spend waste bought lot fine money bit worth stop
camera remote sensor front ir shutter pouch infrared delay accept
terrific hesitate easy great excellent good surprise pleased recommend awesome
gift wife daughterinlaw gave enough sooner grandmother present mom idea

Table 1.1: Examples of topic modeling output on Amazon product reviews, with topics
represented by the 10 most probable words in the topic-word distribution. Coarse-grained
topics deal with general product types, while fine-grained topics deal with both product types
and specific aspects of particular product types.

model trained with 4,000 topics using the techniques described in this dissertation. The six

representative topics from each model are randomly chosen. The coarse-grained topics tend

to deal with general product types. While some fine-grained topics are also concerned with

products types such as headphones, others are about a specific aspect of certain products.

For example, there is a topic which deals with whether a product is a gift for a female family

member, and a topic which describes the remotes included with certain cameras.

The goal of this dissertation is to demonstrate that fine-grained topic modeling not

only is possible, but that it enables topic-based use cases which are not currently possible

using only traditional coarse-grained topic models. For example, while topic models have

been used for document-level classification [96], topic models have not been successfully

employed for granular classification in which individual paragraphs or sentences are labeled

instead of entire documents.

Another potential application is the problem of aspect level sentiment classification [98].

Rather than attempting to classify the overall sentiment of an entire document, aspect level

classification attempts to classify aspects of a document with respect to a specific context. As
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an example, consider the sentence “overall the food was delicious and we loved the experience,

although it was a bit pricey.“ A general sentiment classifier would likely predict positive

sentiment for this sentence, while an aspect level sentiment classification system might identify

positive sentiment about food, but a negative sentiment about price. With fine-grained topic

modeling, we could accurately determine which aspect is being discussed in specific sentences

or phrases, and then make predictions about the various aspects of a document.

While there are many potential applications of fine-grained topic modeling, in this

dissertation, we limit our scope by focusing specifically on the problem of automatic cross-

reference generation (i.e., finding small sets of the most topically related documents in a

large corpus). Historically, the process of generating cross-references resources has been

prohibitively expensive. Consequently, large cross-reference resources only exist for the most

well studied texts (e.g., religious texts). We use fine-grained topic modeling to propose

cross-references which can be reviewed by experts in order to quickly and cheaply produce

cross-reference resources for new texts. We demonstrate that this system greatly benefits

from the addition of fine-grained topic modeling compared to traditional coarse-grained topic

models. We discuss this application of fine-grained topic modeling in Chapter 6.

1.2 Existing Topic Models

Before we discuss our specific contributions, we frame our work by reviewing existing topic

modeling literature. We first give an overview of traditional probabilistic topic modeling

literature. We then give a brief description of more recent work using anchor words.

We purposefully omit literature dealing with word embeddings. While there are

similarities between word embeddings and topic models, the models are trained differently,

and those differences make the models useful for different tasks. We discuss the relationship

between word embeddings and topic modeling in more detail in Appendix A.
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1.2.1 Probabilistic Topic Modeling

One of the earliest topic models was Latent Semantic Indexing or LSI. It was first described

by Deerwester et al. [31] to aid with information retrieval tasks. Later, the algorithm was

formally justified as a topic model [88]. LSI represents documents as a matrix, with each row

representing a term-count vector. The algorithm views topic modeling as a matrix factorization

problem, relying on singular value decomposition to project documents represented as vectors

into a lower dimension topic space. This dimensionality reduction not only improved the

empirical performance of information retrieval systems, but was computationally less expensive

at query time than existing information retrieval systems at the time.

A probabilistic variant of LSI, appropriately named Probabilistic Latent Semantic

Indexing or PLSI, was then developed [49]. Rather than relying on linear algebra, PLSI is a

generative model which views topics as probability distributions over words and documents

as mixtures of topics. The parameters of PLSI are typically learned using expectation

maximization.

Perhaps the most well known work in topic modeling is Latent Dirichlet Allocation

or LDA, first proposed by Blei et al. [16]. Like PLSI, LDA views topics as categorical

distributions over words, but adds Dirichlet priors to PLSI in order to make the model fully

Bayesian. Since LDA is a generative model, we can apply an existing LDA model to new

documents without refitting the model to the new data. The Dirichlet priors also allow LDA

to smooth topics when data is sparse.

Inference Given a set of observed text documents, the goal with LDA and similar

models is typically to compute a maximum a posteriori estimate. The idea behind maximizing

the posterior probability of the latent topic variables given the observed data is that this will

be the setting of latent topic variables which best explains the observed data. In general,

computing exact maximum a posteriori estimates in models like LDA is NP-hard [103], so

practitioners rely on various approximations of the posterior distribution.
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Blei et al. [16] originally used variational Bayes to approximate the posterior distribu-

tion of LDA. This technique uses the mean field assumption to approximate the true but

intractable distribution with an approximation which is trivial to compute. Iteratively mini-

mizing the Kullback-Leibler divergence between the true and the approximate distributions

makes the approximate distribution as close as possible to the true posterior. This technique

is reasonably fast on moderately sized corpora and tends to yield good maximum a posteriori

estimates for LDA.

Another popular technique for approximate inference of LDA is a collapsed Gibbs

sampler [42]. This technique draws samples from the posterior distribution by sampling

values for each individual latent topic variable in the model. The other parameters of the

model are marginalized or collapsed in order to reduce the sample complexity of the model

using the complete conditional distribution for each individual variable. These updates are

performed iteratively to form a Markov chain. Although the chain only updates using the

complete conditional, taken together these samples provably come from the true posterior

distribution. However, while most Bayesian analysis seeks to characterize the entire posterior

distribution, in order to find the topic assignments that best explain the data, we desire a

maximum a posteriori estimate. To do so, typically the sampler is run until it has stabilized,

and a representative sample is selected using the intuition that the sampler tends towards

regions of high probability and is likely to be close to a mode in the posterior distribution.

Other techniques such as expectation propagation have also been explored [77]. With

respect to held-out perplexity, which is defined as 2H(p), where H(p) is the entropy of the

distribution over held-out data, each of these inference algorithms tends to perform roughly

the same when coupled with hyperparameter optimization [8]. Typically, hyperparameter

optimization is performed using fixed-point techniques [112]. Unfortunately, while hyperpa-

rameter optimization is needed to improve the quality of the maximum a posteriori estimates,

it also tends to reduce the number of meaningful topics in the model [8]. For example, Wallach

et al. [113] found that increasing the number of topics beyond 25 had little effect on datasets
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such as 20 newsgroups, despite the number of documents. Consequently, the usefulness of

LDA and similar models is diminished when applied to problems requiring fine-grained topic

modeling, as each topic, or rather, each of the few topics which are actually utilized by the

model, must explain many documents.

When speed is required, various other inference algorithms have been proposed.

For example, SparseLDA modifies the existing Gibbs sampler by binning low probability

topic assignments so they can be considered in aggregate [118]. In the presence of parallel

computational resources, a parallel Gibbs sampler has been developed [102]. While this

inference scheme technically does not produce correct Markov chains while sampling, it has

been shown to achieve results comparable to a more correct but serial Gibbs sampler. Online

learning for LDA has also been developed [47].

Evaluation Since topics are categorical distributions over the entire corpus vocabulary,

understanding model output can be somewhat daunting for users. Thus visualization is useful

to help users explore topical trends in data. An early effort in topic visualization was the

Topic Browser [39]. Other popular topic visualization software include Termite [26] and a

system by Chaney and Blei [22]. Each of these systems allows users to visualize topic as sets

of related words, as well as browse documents which correspond to particular topics. When

paired with appropriate document data, other topical trends can be visualized. For example,

Topic Browser allows users to plot the prevalence of topics over time.

Barring topic visualization systems, a common way to represent topics to users is

by presenting topics as a set of the n most probable words in the topic-word distribution.

Consequently, a popular way of evaluating topic models is with topic coherence, which is

defined as: ∑
v1,v2∈V

log
D(v1, v2) + ε

D(v2)
, (1.1)

where the function D(v1, v2) is the co-document frequency of word types v1 and v2, and D(v2)

is the document frequency of word type v2 [76]. Alternatively, coherence can be defined with

respect to the pairwise word cooccurrences in an external dataset such as Wikipedia [83].
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Topic coherence has been shown to correlate with human evaluations of topic quality. This is

an advantage compared to earlier automated evaluations such as held-out perplexity, which

have since been shown to actually be negatively correlated with human evaluations of topic

coherency [23]. On the other hand, with topic coherence some care must be taken with regards

to the choice of how many of the most probable words to use in the coherence calculation [59].

Other work on automatic evaluation of topics includes metrics for evaluating topic sig-

nificance [1]. Topic significance is evaluated in three ways. First, the topic-word distributions

are compared to the uniform distribution over words, with the idea that a significant topic

should focus on a few specific terms rather than many terms uniformly. Second, the distance

between the topic-word distributions and the vacuous, or background distribution of words in

the entire data is measured, with the idea that significant topics should not reflect the entire

data, but specific thematic trends in the data. Finally, the document-topic distribution is

compared to the uniform distribution over documents, using the intuition that significant

topics should be present in a smaller number of documents, rather than being a background

topic found throughout the entire corpus of documents.

Despite the usefulness of automated metrics of topic quality, perhaps the most im-

portant way to evaluate topic models is by measuring their performance for use in the

intended downstream tasks. For example, topic modeling can be viewed as a dimension-

ality reduction technique, with topics serving as features for classification tasks. Thus it

is common to evaluate topic models such as LDA by their performance as classification

features [16, 96]. Topic models have also been applied to the field of information retrieval to

improve ad-hoc retrieval [115]. Another task topic models have been successful at is word

sense disambiguation [18].

One area in which evaluation techniques have been lacking is in token level topic

assignments. As evidenced by recent work such as CopulaLDA [10], there is interest in

improving the quality of token level topic assignments. However, even this work relies on
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traditional global topic-word distributions for evaluation. We address this shortcoming and

explore ways of evaluating local topic model quality in Chapter 4.

LDA Extensions LDA is also easily extended to create topic models which perform

specialized tasks. These models can be highly specific to a particular task or dataset. For

example, the Capsule Model was developed for aiding historical research by topically analyzing

millions of U.S. State Department cables, taking into account not only the text, but the

entities, dates, and events in each cable. For more generic types of supervised learning, sLDA

is a supervised extension of LDA which allows topics to be inferred from document text as well

as document metadata [15]. Once learned, an sLDA model can be used to both infer topics

and predict missing metadata on new data. A similar approach has been used to perform topic-

based multi-label classification [96]. The Multi-Aspect Sentiment model [106] and Labeled

LDA [91] accomplish a similar result for sentiment and tags respectively. The Author-Topic

Model generates topics which utilize authorship information during inference [95].

Other extensions of LDA seek to improve the topical structure in some way. For

example the Correlated Topic Model [14] and the Pachinko Allocation [61] change the model

structure so that inter-topic correlations are explicitly modeled. The Pachinko Allocation

model is useful in particular as it allows practitioners to define an arbitrary directed acyclic

graph structure for topics, modeling topic correlations at each level of the graph. In fact,

LDA is a special case of Pachinko Allocation. Similarly, Hierarchical LDA [41] changes the

model structure by using a nested Chinese restaurant process to model topics in a hierarchical

structure.

Another type of modification to LDA is to reexamine the distribution family used to

model topics. LDA relies on the Dirichlet-Multinomial conjugate pair to model topic-word

distributions, but other distributions could be used instead. For example, the Spherical

Admixture Model employs the same basic structure of LDA, but uses a von Mises-Fisher

distribution over words on a unit hypersphere [92]. This allows us to measure document

similarity using cosine distance, and allows topics to assign negative weight to words. Alter-
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natively, we can replace the traditional Dirichlet-Multinomial by modeling log-frequencies

in order to combine multiple facets (including topics) of text into an additive generative

model [35].

Integrating syntax into topic models has also proven to be useful. Both the Syntactic

Topic Model [17] and HMM-LDA [43] integrate short-range syntactic dependencies with

long-range topic dependencies and can be used to jointly infer topics with other syntactic

features such as part-of-speech tags. More recent work uses copulas to model short-range

topic dependencies in order to improve token-level topic assignments [10].

Interactive Topic Modeling Another important line of research related to topic

modeling is the idea of interactive topic modeling. Combining topic visualization with topic

inference, interactive topic models add human input into the loop during the inference process.

By adding human interactivity, we are able to inject user specific domain knowledge into the

model, or custom tailor the model for a user-specified analysis.

The Interactive Topic Model (ITM) is perhaps the most well known example of a topic

model which incorporates human guidance during inference [51]. Rather than modeling topics

as distributions over words, the ITM models topics as Dirichlet forests of words. The structure

and priors of the Dirichlet forests encode user-specified word constraints. For example, two

words could be placed into a forest with an appropriate prior to form a “must-link” constraint

which requires a topic to highly weight either both words, or neither word.

In order for a model to be interactive, topic inference must be fast. If the time between

updates is too great, cognitive load on the user increases and the interaction suffers [28]. For

the ITM, a modified Gibbs sampling scheme based on SparseLDA [118] has been proposed [50].

Alternatively, Iterated Conditional Modes [11] can be used to quickly find a locally optimal

mode in the posterior in order to quickly update an ITM model [65].

Topic models are also useful for a variety of tasks. A key insight as to why LDA has

garnered so much interest and inspired so many derivative topic models is the power of model

based learning. Rather than simply feeding data to some existing machine learning algorithm,

11



www.manaraa.com

we create a model which encodes our assumptions about the data into a generative story.

That generative story can include not only latent topics, but any number of other observable

document metadata. This model is then paired with a generic inference algorithm in order to

create a new machine learning algorithm which is custom tailored to solve a specific problem.

This makes probabilistic topic modeling extremely flexible and powerful, and relatively easy

for practitioners to adapt for specialized tasks.

1.2.2 Anchor Words

While probabilistic topic models are easily adapted to a wide variety of tasks, and efficient

approximate inference algorithms have been developed to learn such models, the runtime

complexity of inference tends to scale linearly with the size of the data. Consequently, topic

modeling literature tends to work with datasets consisting of tens of thousands of documents.

However, for web scale sized datasets, inference speed becomes an issue for probabilistic topic

models.

Fortunately, a new class of topic models called the anchor algorithm has emerged

which promises much more scalable inference. Like LSI [31], the anchor algorithm views

topic modeling as a matrix factorization problem. However, LSI relies on singular value

decomposition whereas the anchor algorithm utilizes non-negative matrix factorization. Arora

et al. [5] argue that topic modeling based on singular value decomposition must have one of

two limitations: either each document must contain only a single topic, or we are only able

to recover the span of the topic vectors (rather than the topics themselves). Non-negative

matrix factorization overcomes these limitations, and lets us view topics probabilistically if

we normalize the resulting topic matrix.

The goal of the anchor algorithm is to compute an unknown V ×K word-topic matrix

A with non-negative entries, where V is the vocabulary size, and K is the desired number of

topics. Once column-normalized, Avk encodes the conditional probability of observing word

type v given topic k. There is also a topic-document matrix W of dimension K ×D, where
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D is the number of documents in our dataset. The dth column of W gives the proportion

of each topic in the dth document. Since the observed V ×D term-document matrix M is

equal to AW , non-negative matrix factorization can be used to recover the topic matrix A.

In general, non-negative matrix factorization is an NP-Hard problem, even when the

inner dimension K is small [4]. Consequently, when non-negative matrix factorization is

required, typically we rely on approximations which minimize ‖M −AW ‖F , where ‖‖F is

the Frobenius norm [24]. However, Arora et al. [4] also show that under certain conditions of

separability, non-negative matrix factorization can be computed exactly in polynomial time.

This separability assumption states that for each topic k, there exists at least one

anchor word which has non-zero probability only in that topic: Av,k >> Av,j∀j 6= k. This

separability assumption was originally described by Donoho and Stodden [34] for image

segmentation, but has been shown to hold for many machine learning applications, including

topic modeling [5]. Anchor words make computing the topic matrix A tractable because the

occurrence pattern of the anchor words across documents must mirror the occurrence pattern

of the topics across documents.

To recover topic matrix A using anchor words, we first compute a V ×V row-normalized

word cooccurrence matrix Q, where Qi,j is the conditional probability p(wj |wi): seeing word

type wj after having seen type wi in the same document. Intuitively, Q can be thought of as

MMT , although the actual details of its construction are given by Arora et al. [6].

We then select K anchor words {g1 . . . gK} using a form of the Gram-Schmidt process

described in Arora et al. [6]. Each word corresponds to a row in Q. We view each row of

Q as a vector in V -dimensional space. The Gram-Schmidt process greedily chooses points

which maximize the volume of the simplex formed by the chosen points. Each of these points

correspond to a word type, so we choose points to serve as anchor words which can represent

more words per document.

Once we have the set of anchor words g, we compute the probability of a topic given a

word (the inverse of the conditioning in A). This matrix, C, is defined row-wise for each word
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i as C∗i· = argmin
Ci·

DKL

(
Qi·‖

∑K
k=1CikQgk·

)
, where DKL is Kullback-Leibler divergence.

Thus each non-anchor word is represented as a convex combination of the anchor words.

Solving each row of C is fast using exponentiated gradient descent and is embarrassingly

parallel. Since C is the inverse conditioning of A, we can recover A using Bayes’ rule

by multiplying C by the word probabilities (the word probabilities are easily obtained by

computing Q~1).

The training time using the anchor algorithm can be orders of magnitude faster than

methods based on probabilistic modeling. The construction of Q requires only a single pass

over the data and can be pre-computed as part of the data import. Once Q is constructed,

actual topic inference scales with the size of Q, which in turn, is dependent on the size of

the vocabulary V . Following Heaps’ law, the vocabulary size V tends to grow exponentially

slower than the number of documents D [46]. Consequently, at a certain dataset size, topic

recovery with the anchor algorithm is essentially unaffected by increased scale.

In contrast, topic inference using traditional model-based approaches such as Latent

Dirichlet Allocation [16] typically requires multiple passes over the entire data to infer topics.

For example, using a Gibbs sampler to estimate an LDA model requires one to iteratively

sample each variable in the model multiple times (often hundreds) until the sampler stabilizes.

Techniques such as Online LDA [47] or Stochastic Variation Inference [48] could improve this

to a single pass over the entire data. Nevertheless, topic inference for model-based approaches

scales with the size of the data.

Since the introduction of the anchor algorithm, some minor improvements to the

algorithm have been proposed. Lee and Mimno [60] propose a better anchor selection

algorithm based on computing the convex hull of a t-SNE [68] projected version of Q. This

method helps find more salient words to become anchors, compared to the somewhat eccentric

words chosen by the greedy Gram-Schmidt algorithm. Nguyen et al. [85] also add robustness

to the anchor algorithm by adding regularization to the objective function when computing

the rows of the coefficient matrix C.
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While the scalability of the anchor algorithm is attractive compared to model based

topic inference, it is not a drop-in replacement for probabilistically driven work, nor does it

directly accomplish our goal of fine-grained topic modeling with an eye towards topical analysis

of individual documents. The existing Gram-Schmidt based technique for finding anchors

tends to find eclectic words as anchors, making it unsuited for fine-grained topic modeling.

Furthermore, without a way to measure and improve the word level topic assignments,

fine-grained topic models are less useful because the analysis of individual documents is less

accurate.

1.3 Thesis Statement

We introduce fine-grained topic modeling, which combines large numbers of highly nuanced

topics with correct token level topic assignments. Fine-grained topic modeling enables topic-

based use cases, such as finding small sets of topically related documents, which are not

feasible with current topic modeling techniques.

1.4 Overview of Dissertation

Because traditional probabilistic topic modeling based on LDA cannot support a large number

of topics and has problems with token level topic assignment accuracy, we turn to anchor

methods to solve the problem of fine-grained topic modeling. This dissertation presents a

variety of contributions on this front in three different parts:

Part I: Anchor Selection Our first set of contributions revolves around anchor

selection. The anchor algorithm as described by Arora et al. [6] requires that each topic

be anchored by a single anchor words which uniquely identifies the topic (meaning it has

non-zero probability) in that topic only. Furthermore, if a large number of anchors is used,

the anchors tend to become strange and esoteric [60]. We make two major contributions

improving anchor selection.
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First, in Chapter 2 we relax the restriction that anchor words be a single word. The

anchor algorithm works by representing words in a vector-space and then choosing certain

words (i.e., points in that space) to anchor each topic. We allow multiple words to form an

anchor by averaging the vector-space representation of each word to pick a central point to

anchor a topic.

We present this contribution as a way to extend the anchor words algorithm to allow

interactive topic modeling. This contribution is useful for fine-grained topic modeling since it

lets us select large numbers of nuanced anchors, instead of being restricted to the few points

in vector-space which correspond to a single word.

In Chapter 3, we also present a way to allow outside information such as document

metadata or other supervised labels to inform anchor selection. This work, which we call

labeled anchor words, provides a way to extend anchor words to include a transparent and

interactive topic-based document classifier. However, we claim that allowing metadata to

influence anchor selection can also be used to enable fine-grained topic modeling by refining

anchors to be more nuanced as they better reflect not only the text, but also important

metadata attributes.

Part II: Token Assignment While selecting better anchors enables us to learn more

nuanced topics, this nuance is lost if the token level topic assignments are inaccurate. We

make two contributions towards improving token-level (or local) topic model quality.

First, in Chapter 4, we explore local topic model evaluation. Several models have

been proposed which claim to improve the topic assignments of LDA (e.g., CopulaLDA [10],

SentenceLDA[9]). However, these models have only been evaluated globally without respect

to the actual token level topic assignments.

To rectify this problem, we design a crowdsourcing task which can elicit human

evaluation of topic quality. We use this task on a large number of topic models on three

different datasets. We then propose a variety of potential automated metrics and compute

correlation between the automated metrics and the human evaluations. With an automated
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metric which correlates well with human evaluations, we can then evaluate new topic models

with respect to local topic quality.

We use this new metric in Chapter 5, in which we explore the best way to assign words

to topics using topics learned from anchor methods. Since the anchor method only recovers

the global topic-word probabilities, typically practitioners use LDA with fixed topics to make

the topic assignments [86]. Since LDA is known to have issues with local topic quality [10]

and armed with automated metrics to evaluate local topic quality, we investigate various

methods of computing the local topic assignments using topics learned by anchor words.

Part III: Application Finally, in Chapter 6 we apply what we have learned to the

problem of cross-referencing. This problem is hard because it either requires annotators to

evaluate n2 potential references or be intimately familiar with the text to the point that

they can recall related passages of text while reading another passage. As an alternative, we

can use topic modeling to find related passages of text. We demonstrate that anchor-based

fine-grained topic models are able to significantly reduce the cost of producing cross-reference

resources compared to traditional coarse-grained topic modeling.

Part IV: Parallelization As one final contribution, we explore parallelization of

parts of the anchor algorithm in Chapter 7. While this is not strictly necessary for the

algorithm or our experiments with fine-grained topic modeling, it has proved useful for the

completion of this dissertation by enabling us to take advantage of our parallel hardware.

Our implementation utilizes Mrs, a Python implementation of MapReduce. We describe

some of our modifications to Mrs which make it especially suitable for scientific computing in

general in Chapter 8.
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Part I

Anchor Selection

With anchor-based topic modeling, each topic is anchored by a word which uniquely

identifies the topic. Our first contribution towards fine-grained topic modeling is two published

papers which improve the process of anchor selection. In Chapter 2, we relax the constraint

that each topic be anchored by a single word and instead allow topics to be anchored by

“tandem anchors” which are composed of multiple words. This work is presented as an

extension to the anchor words algorithm for interactive topic modeling, but as we’ll see

later in Chapter 6, the technique can also be used to improve fine-grained topic models. In

Chapter 3, we further improve anchor selection by presenting a method for incorporating

document metadata such as ratings on product reviews into the anchor selection process.

This work is presented as a supervised extension to anchor words, and allows anchor-based

topic models to take advantage of metadata during anchor selection and topic inference.
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Chapter 2

Tandem Anchoring: A Multiword Anchor Approach for Interactive Topic

Modeling

Published in Proceedings of the Association for Computational Linguistics 2016 [66]

Abstract

Interactive topic models are powerful tools for understanding large collections of text. However,

existing sampling-based interactive topic modeling approaches scale poorly to large data

sets. Anchor methods, which use a single word to uniquely identify a topic, offer the speed

needed for interactive work but lack both a mechanism to inject prior knowledge and lack

the intuitive semantics needed for user-facing applications. We propose combinations of

words as anchors, going beyond existing single word anchor algorithms—an approach we call

“Tandem Anchors”. We begin with a synthetic investigation of this approach then apply

the approach to interactive topic modeling in a user study and compare it to interactive

and non-interactive approaches. Tandem anchors are faster and more intuitive than existing

interactive approaches.

2.1 Introduction

Topic models distill large collections of text into topics, giving a high-level summary of

the thematic structure of the data without manual annotation. In addition to facilitating

discovery of topical trends [39], topic modeling is used for a wide variety of problems

including document classification [96], information retrieval [115], author identification [95],

19



www.manaraa.com

and sentiment analysis [106]. However, the most compelling use of topic models is to help

users understand large datasets [26].

Interactive topic modeling [52] allows non-experts to refine automatically generated

topics, making topic models less of a “take it or leave it” proposition. Including human

input during training improves the quality of the model and allows users to guide topics in a

specific way, custom tailoring the model for a specific downstream task or analysis.

The downside is that interactive topic modeling is slow—algorithms typically scale

with the size of the corpus—and require non-intuitive information from the user in the form of

must-link and cannot-link constraints [3]. We address these shortcomings of interactive topic

modeling by using an interactive version of the anchor words algorithm for topic models.

The anchor algorithm [6] is an alternative topic modeling algorithm which scales

with the number of unique word types in the data rather than the number of documents or

tokens (Section 2.2). This makes the anchor algorithm fast enough for interactive use, even

in web-scale document collections.

A drawback of the anchor method is that anchor words—words that have high

probability of being in a single topic—are not intuitive. We extend the anchor algorithm

to use multiple anchor words in tandem (Section 2.3). Tandem anchors not only improve

interactive refinement, but also make the underlying anchor-based method more intuitive.

For interactive topic modeling, tandem anchors produce higher quality topics than

single word anchors (Section 2.4). Tandem anchors provide a framework for fast interactive

topic modeling: users improve and refine an existing model through multiword anchors

(Section 2.5). Compared to existing methods such as Interactive Topic Models [52], our

method is much faster.

2.2 Vanilla Anchor Algorithm

The anchor algorithm computes the topic matrix A, where Av,k is the conditional probability

of observing word v given topic k, e.g., the probability of seeing the word “lens” given the
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camera topic in a corpus of Amazon product reviews. Arora et al. [4] find these probabilities

by assuming that every topic contains at least one ‘anchor’ word which has a non-zero

probability only in that topic. Anchor words make computing the topic matrix A tractable

because the occurrence pattern of the anchor word mirrors the occurrence pattern of the

topic itself.

To recover the topic matrix A using anchor words, we first compute a V × V cooccur-

rence matrix Q, where Qi,j is the conditional probability p(wj |wi) of seeing word type wj

after having seen wi in the same document. A form of the Gram-Schmidt process on Q finds

anchor words {g1 . . . gk} [6].

Once we have the set of anchor words, we can compute the probability of a topic given

a word (the inverse of the conditioning in A). This coefficient matrix C is defined row-wise

for each word i

C∗i,· = argmin
Ci,·

DKL

(
Qi,·

∥∥∥∥ K∑
k=1

Ci,kQgk,·

)
, (2.1)

which gives the best reconstruction (based on Kullback-–Leibler divergence DKL) of non-

anchor words given anchor words’ conditional probabilities. For example, in our product review

data, a word such as “battery” is a convex combination of the anchor words’ contexts (Qgk,·)

such as “camera”, “phone”, and “car”. Solving each row of C is fast and is embarrassingly

parallel. Finally, we apply Bayes’ rule to recover the topic matrix A from the coefficient

matrix C.

The anchor algorithm can be orders of magnitude faster than probabilistic inference [6].

The construction of Q has a runtime of O(DN2) where D is the number of documents and N

is the average number of tokens per document. This computation requires only a single pass

over the data and can be pre-computed for interactive use-cases. Once Q is constructed, topic

recovery requires O(KV 2 +K2V I), where K is the number of topics, V is the vocabulary

size, and I is the average number of iterations (typically 100-1000). In contrast, traditional

topic model inference typically requires multiple passes over the entire data. Techniques such

as Online lda [47] or Stochastic Variation Inference [48] improves this to a single pass over
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Anchor Top Words in Topics

backpack backpack camera lens bag room carry fit cameras equipment comfortable
camera camera lens pictures canon digital lenses batteries filter mm photos
bag bag camera diaper lens bags genie smell room diapers odor

Table 2.1: Three separate attempts to construct a topic concerning camera bags in Amazon
product reviews with single word anchors. This example is drawn from preliminary experi-
ments with an author as the user. The term “backpack” is a good anchor because it uniquely
identifies the topic. However, both “camera” and “bag” are poor anchors for this topic.

the entire data. However, from Heaps’ law [46] it follows that V 2 � DN for large datasets,

leading to much faster inference times for anchor methods compared to probabilistic topic

modeling. Further, even if online inference techniques were to be adapted to incorporate

human guidance, a single pass is not tractable for interactive use.

2.3 Tandem Anchor Extension

Single word anchors can be opaque to users. For an example of bewildering anchor words,

consider a camera bag topic from a collection of Amazon product reviews (Table 2.1). The

anchor word “backpack” may seem strange. However, this dataset contains nothing about

regular backpacks; thus, “backpack” is unique to camera bags. Bizarre, low-to-mid frequency

words are often anchors because anchor words must be unique to a topic; intuitive or

high-frequency words cannot be anchors if they have non-zero probability in any other topic.

The anchor selection strategy can mitigate this problem to some degree. For example,

rather than selecting anchors using an approximate convex hull in high-dimensional space,

we can find an exact convex hull in a low-dimensional embedding [60]. This strategy will

produce more salient topics but still makes it difficult for users to manually choose unique

anchor words for interactive topic modeling.

If we instead ask users to give us representative words for this topic, we would expect

combinations of words like “camera” and “bag.” However, with single word anchors we must

choose a single word to anchor each topic. Unfortunately, because these words might appear
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Figure 2.1: Example of geometric intuition behind tandem anchoring. Words are embedded
in V-dimensional cooccurrence space. Notice that neither the word “camera” or “bag” occupy
the space which has the occurrence pattern describing the concept of camera bags (i.e., close
to “backpack”). However, if we average the two vectors, we end up in the neighborhood
which does capture this concept.

in multiple topics, individually they are not suitable as anchor words. The anchor word

“camera” generates a general camera topic instead of camera bags, and the topic anchored by

“bag” includes bags for diaper pails (Table 2.1).

Instead, we need to use sets of representative terms as an interpretable, parsimonious

description of a topic. This section discusses strategies to build anchors from multiple words

and the implications of using multiword anchors to recover topics. This extension not only

makes anchors more interpretable but also enables users to manually construct effective

anchors in interactive topic modeling settings.

2.3.1 Anchor Facets

We first need to turn words into an anchor. If we interpret the anchor algorithm geometrically,

each row of Q represents a word as a point in V -dimensional space. We then model each point

as a convex combination of anchor words to reconstruct the topic matrix A (Equation 2.1).
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Instead of individual anchor words (one anchor word per topic), we use anchor facets, or

sets of words that describe a topic. The facets for each anchor form a new pseudoword, or

an invented point in V -dimensional space (described in more detail in Section 2.3.2).

While these new points do not correspond to words in the vocabulary, we can express

non-anchor words as convex combinations of pseudowords. To construct these pseudowords

from their facets, we combine the co-occurrence profiles of the facets. These pseudowords

then augment the original cooccurrence matrix Q with K additional rows corresponding to

synthetic pseudowords forming each of K multiword anchors. We refer to this augmented

matrix as S. The rest of the anchor algorithm proceeds unmodified.

Our augmented matrix S is therefore a (V + K) × V matrix. As before, V is the

number of token types in the data and K is the number of topics. The first V rows of S

correspond to the V token types observed in the data, while the additional K rows correspond

to the pseudowords constructed from anchor facets. Each entry of S encodes conditional

probabilities so that Si,j is equal to p(wi |wj). For the additional K rows, we invent a

cooccurrence pattern that can effectively explain the other words’ conditional probabilities.

This modification is similar in spirit to supervised anchor words [86]. This supervised

extension of the anchor words algorithm adds columns corresponding to conditional probabil-

ities of metadata values after having seen a particular word. By extending the vector-space

representation of each word, anchor words corresponding to metadata values can be found.

In contrast, our extension does not add dimensions to the representation, but simply places

additional points corresponding to pseudoword words in the vector-space representation.

2.3.2 Combining Facets into Pseudowords

We now describe more concretely how to combine anchor facets to describe the cooccurrence

pattern of our new pseudoword anchor. In tandem anchors, we create vector representations

that combine the information from anchor facets. Our anchor facets are G1 . . .GK , where Gk

is a set of anchor facets which will form the kth pseudoword anchor. The pseudowords are
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g1 . . . gK , where gk is the pseudoword from Gk. These pseudowords form the new rows of S.

We give several candidates for combining anchors facets into a single multiword anchor; we

compare their performance in Section 2.4.

Vector Average An obvious function for computing the central tendency is the

vector average. For each anchor facet,

Sgk,j =
∑
i∈Gk

Si,j

|Gk|
, (2.2)

where |Gk| is the cardinality of Gk. Vector average makes the pseudoword Sgk,j more central,

which is intuitive but inconsistent with the interpretation from Arora et al. [6] that anchors

should be extreme points whose linear combinations explain more central words.

Or-operator An alternative approach is to consider a cooccurrence with any anchor

facet in Gk. For word j, we use De Morgan’s laws to set

Sgk,j = 1−
∏
i∈Gk

(1− Si,j). (2.3)

Unlike the average, which pulls the pseudoword inward, this or-operator pushes the word

outward, increasing each of the dimensions. Increasing the volume of the simplex spanned by

the anchors explains more words.

Element-wise Min Vector average and or-operator are both sensitive to outliers

and cannot account for polysemous anchor facets. Returning to our previous example, both

“camera” and “bag” are bad anchors for camera bags because they appear in documents

discussing other products. However, if both “camera” and “bag” are anchor facets, we can

look at an intersection of their contexts: words that appear with both. Using the intersection,

the cooccurrence pattern of our anchor facet will only include terms relevant to camera bags.

Mathematically, this is an element-wise min operator,

Sgk,j = min
i∈Gk

Si,j. (2.4)
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This construction, while perhaps not as simple as the previous two, is robust to words which

have cooccurrences which are not unique to a single topic.

Harmonic Mean Leveraging the intuition that we should use a combination function

which is both centralizing (like vector average) and ignores large outliers (like element-wise

min), the final combination function is the element-wise harmonic mean. Thus, for each

anchor facet

Sgk,j =
∑
i∈Gk

(
S−1i,j

|Gk|

)−1
. (2.5)

Since the harmonic mean tends towards the lowest values in the set, it is not sensitive to

large outliers, giving us robustness to polysemous words.

2.3.3 Finding Topics

After constructing the pseudowords of S we then need to find the coefficients Ci,k which

describe each word in our vocabulary as a convex combination of the multiword anchors.

Like standard anchor methods, we solve the following for each token type:

C∗i,· = argmin
Ci,·

DKL

(
Si,·

∥∥∥∥ K∑
k=1

Ci,kSgk,·

)
. (2.6)

Finally, we appeal to Bayes’ rule to we recover the topic-word matrix A from the coefficients

of C.

The correctness of the topic recovery algorithm hinges upon the assumption of sep-

arability. Separability means that the occurrence pattern across documents of the anchor

words across the data mirrors that of the topics themselves. For single word anchors, this

has been observed to hold for a wide variety of data [5]. With our tandem anchor extension,

we make similar assumptions as the vanilla algorithm, except with pseudowords constructed

from anchor facets. So long as the occurrence pattern of our tandem anchors mirrors that of

the underlying topics, we can use the same reasoning as Arora et al. [4] to assert that we

can provably recover the topic-word matrix A with all of the same theoretical guarantees
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of complexity and robustness. Furthermore, the runtime analysis given by Arora et al. [6]

applies to tandem anchors.

If desired, we can also add further robustness and extensibility to tandem anchors by

adding regularization to Equation 2.6. Regularization allows us to add something which is

mathematically similar to priors, and has been shown to improve the vanilla anchor word

algorithm [85]. We leave the question of the best regularization for tandem anchors as future

work, and focus our efforts on solving the problem of interactive topic modeling.

2.4 High Water Mark for Tandem Anchors

Before addressing interactivity, we apply tandem anchors to real world data, but with anchors

gleaned from metadata. Our purpose is twofold. First, we determine which combiner from

Section 2.3.2 to use in our interactive experiments in Section 2.5 and second, we confirm

that well-chosen tandem anchors can improve topics. In addition, we examine the runtime of

tandem anchors and compare to traditional model-based interactive topic modeling techniques.

We cannot assume that we will have metadata available to build tandem anchors, but we use

them here because they provide a high water mark without the variance introduced by study

participants.

2.4.1 Experimental Setup

We use the well-known 20 Newsgroups dataset (20news) used in previous interactive topic

modeling work: 18,846 Usenet postings from 20 different newgroups in the early 1990s.1 We

remove the newsgroup headers from each message, which contain the newsgroup names, but

otherwise left messages intact with any footers or quotes. We then remove stopwords and

words which appear in fewer than 100 documents or more than 1,500 documents.

To seed the tandem anchors, we use the titles of newsgroups. To build each multiword

anchor facet, we split the title on word boundaries and expand any abbreviations or acronyms.

1http://qwone.com/~jason/20Newsgroups/
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For example, the newsgroup title ‘comp.os.ms-windows.misc’ becomes {“computer”, “oper-

ating”, “system”, “microsoft”, “windows”, “miscellaneous”}. We do not fully specify the

topic; the title gives some intuition, but the topic modeling algorithm must still recover the

complete topic-word distributions. This is akin to knowing the names of the categories used

but nothing else. Critically, the topic modeling algorithm has no knowledge of document-label

relationships.

2.4.2 Experimental Results

Our first evaluation is a classification task to predict documents’ newsgroup membership.

Thus, we do not aim for state-of-the-art accuracy,2 but the experiment shows title-based

tandem anchors yield topics closer to the underlying classes than Gram-Schmidt anchors.

After randomly splitting the data into test and training sets we learn topics from the test

data using both the title-based tandem anchors and the Gram-Schmidt single word anchors.3

For multiword anchors, we use each of the combiner functions from Section 2.3.2. The anchor

algorithm only gives the topic-word distributions and not word-level topic assignments, so we

infer token-level topic assignments using Latent Dirichlet Allocation [16] with fixed topics

discovered by the anchor method. We use our own implementation of Gibbs sampling with

fixed topics and a symmetric document-topic Dirichlet prior with concentration α = .01.

With fixed topics, inference is very fast and can be parallelized on a per-document basis. We

then train a hinge-loss linear classifier on the newsgroup labels using Vowpal Wabbit4 with

topic-word pairs as features. Finally, we infer topic assignments in the test data and evaluate

the classification using those topic-word features. For both training and test, we exclude

words outside the lda vocabulary.

2The best system would incorporate topic features with other features, making it harder to study and
understand the topical trends in isolation.

3With fixed anchors and data the anchor algorithm is deterministic, so we use random splits instead of
the standard train/test splits so that we can compute variance.

4http://hunch.net/~vw/
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Figure 2.2: Using metadata can improve anchor-based topic models. For all metrics, the
unsupervised Gram-Schmidt anchors do worse than creating anchors based on Newsgroup
titles (for all metrics except vi, higher is better). For coherence, Gram-Schmidt does better
than two functions for combining anchor words, but not the element-wise min or harmonic
mean.

The topics created from multiword anchor facets are more accurate than Gram-Schmidt

topics (Figure 2.2). This is true regardless of the combiner function. However, harmonic

mean is more accurate than the other functions.5

Since 20news has twenty classes, accuracy alone does not capture confusion between

closely related newsgroups. For example, accuracy penalizes a classifier just as much for

labeling a document from ‘rec.sport.baseball’ with ‘rec.sport.hockey’ as with ‘alt.atheism’

despite the similarity between sports newsgroups. Consequently, after building a confusion

matrix between the predicted and true classes, external clustering metrics reveal confusion

between classes.

The first clustering metric is the adjusted Rand index [119], which is akin to accuracy

for clustering, as it gives the percentage of correct pairing decisions from a reference clustering.

Adjusted Rand index (ari) also accounts for chance groupings of documents. Next we use

F-measure, which also considers pairwise groups, balancing the contribution of false negatives,

but without the true negatives. Finally, we use variation of information (vi). This metric

measures the amount of information lost by switching from the gold standard labels to the

5Significant at p < 0.01/4 when using two-tailed t-tests with a Bonferroni correction. For each of our
evaluations, we verify the normality of our data [29] and use two-tailed t-tests with Bonferroni correction to
determine whether the differences between the different methods are significant.
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predicted labels [73]. Since we are measuring the amount of information lost, lower variation

of information is better.

Based on these clustering metrics, tandem anchors can yield superior topics to those

created using single word anchors (Figure 2.2). As with accuracy, this is true regardless

of which combination function we use. Furthermore, harmonic mean produces the least

confusion between classes.6

The final evaluation is topic coherence by Newman et al. [83], which measures whether

the topics make sense, and correlates with human judgments of topic quality. Given V , the

set of the n most probable words of a topic, coherence is

∑
v1,v2∈V

log
D(v1, v2) + ε

D(v2)
(2.7)

where D(v1, v2) is the co-document frequency of word types v1 and v2, and D(v2) is the

document frequency of word type v2. A smoothing parameter ε prevents zero logarithms.

Figure 2.2 also shows topic coherence. Although title-based anchor facets produce

better classification features, topics from Gram-Schmidt anchors have better coherence than

title-based anchors with the vector average or the or-operator. However, when using the

harmonic mean combiner, title-based anchors produce the most human interpretable topics.6

Harmonic mean beats other combiner functions because it is robust to ambiguous

or irrelevant term cooccurrences in an anchor facet. Both the vector average and the or-

operator are swayed by large outliers, making them sensitive to ambiguous terms in an anchor

facet. Element-wise min also has this robustness, but harmonic mean is also able to better

characterize anchor facets as it has more centralizing tendency than the min.

6Significant at p < 0.01/4 when using two-tailed t-tests with a Bonferroni correction. For each of our
evaluations, we verify the normality of our data [29] and use two-tailed t-tests with Bonferroni correction to
determine whether the differences between the different methods are significant.
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2.4.3 Runtime Considerations

Tandem anchors will enable users to direct topic inference to improve topic quality. However,

for the algorithm to be interactive we must also consider runtime. Cook and Thomas [28]

argue that for interactive applications with user-initiated actions like ours the response time

should be less than ten seconds. Longer waits can increase the cognitive load on the user and

harm the user interaction.

Fortunately, the runtime of tandem anchors is amenable to interactive topic modeling.

On 20news, interactive updates take a median time of 2.13 seconds. This result was obtained

using a single core of an amd Phemon II X6 1090T processor. Furthermore, larger datasets

typically have a sublinear increase in distinct word types, so we can expect to see similar run

times, even on much larger datasets.

Compared to other interactive topic modeling algorithms, tandem anchors has a very

attractive run time. For example, using an optimized version of the sampler for the Interactive

Topic Model described by Hu and Boyd-Graber [50], and the recommended 30 iterations

of sampling, the Interactive Topic Model updates with a median time of 24.8 seconds [50],

which is well beyond our desired update time for interactive use and an order of magnitude

slower than tandem anchors.

Another promising interactive topic modeling approach is Utopian [24], which uses

non-negative factorization, albeit without the benefit of anchor words. Utopian is much

slower than tandem anchors. Even on the small InfoVis-VAST dataset which contains only

515 documents, Utopian takes 48 seconds to converge. While the times are not strictly

comparable due to differing datasets, Utopian scales linearly with the size of the data, we

can intuit that even for moderately sized datasets such as 20news, Utopian is infeasible for

interactive topic modeling due to run time.

While each of these interactive topic modeling algorithms do achieve reasonable topics,

only our algorithm fits the run time requirements for interactivity. Furthermore, since tandem
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Figure 2.3: Interface for user study with multiword anchors applied to interactive topic
modeling.

anchoring scales with the size of the vocabulary rather than the size of the data, this trend

will only become more pronounced as we increase the amount of data.

2.5 Interactive Anchor Words

Given high quality anchor facets, the tandem anchor algorithm can produce high quality

topic models (particularly when the harmonic mean combiner is used). Moreover, the tandem

anchor algorithm is fast enough to be interactive (as opposed to model-based approaches

such as the Interactive Topic Model). We now turn our attention to our main experiment:

tandem anchors applied to the problem of interactive topic modeling. We compare both

single word and tandem anchors in our study. We do not include the Interactive Topic Model

or Utopian, as their run times are too slow for our users.

2.5.1 Interface and User Study

To show that interactive tandem anchor words are fast, effective, and intuitive, we ask users to

understand a dataset using the anchor word algorithm. For this user study, we recruit twenty

participants drawn from a university student body. The student median age is twenty-two.

Seven are female, and thirteen are male. None of the students had any prior familiarity with

topic modeling or the 20news dataset.

Each participant sees a simple user interface (Figure 2.3) with each topic given as a

row with two columns. The left column allows users to view and edit topics’ anchor words;
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the right column lists the most probable words in each topic.7 The user can remove an anchor

word or drag words from the topic word lists (right column) to become an anchor word. Users

can also add additional topics by clicking the “Add Anchor” to create additional anchors. If

the user wants to add a word to a tandem anchor set that does not appear in the interface,

they manually type the word (restricted to the model’s vocabulary). When the user wants to

see the updated topics for their newly refined anchors, they click “Update Topics”.

We give each participant a high level overview of topic modeling. We also describe

common problems with topic models including intruding topic words, duplicate topics, and

ambiguous topics. Users are instructed to use their best judgement to determine if topics

are useful. The task is to edit the anchor words to improve the topics. We asked that users

spend at least twenty minutes, but no more than thirty minutes. We repeat the task twice:

once with tandem anchors, and once with single word anchors.8

2.5.2 Quantitative Results

We now validate our main result that for interactive topic modeling, tandem anchors yields

better topics than single word anchors. Like our title-based experiments in Section 2.4, topics

generated from users become features to train and test a classifier for the 20news dataset.

We choose this dataset for easier comparison with the Interactive Topic Modeling result of Hu

et al. [52]. Based on our results with title-based anchors, we use the harmonic mean combiner

in our analysis. As before, we report not only accuracy, but also multiple clustering metrics

using the confusion matrix from the classification task. Finally, we report topic coherence.

Figure 2.4 summarizes the results of our quantitative evaluation. While we only

compare user generated anchors in our analysis, we include the unsupervised Gram-Schmidt

anchors as a baseline. Some of the data violate assumptions of normality. Therefore, we use

7While we use topics generated using harmonic mean for our final analysis, users were shown topics
generated using the min combiner. However, this does not change our result.

8The order in which users complete these tasks is counter-balanced.
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Figure 2.4: Classification accuracy and coherence using topic features gleaned from user
provided multiword and single word anchors. Grahm-Schmidt anchors are provided as a
baseline. For all metrics except vi, higher is better. Except for coherence, multiword anchors
are best.

Figure 2.5: Topic significance for both single word and multiword anchors. In all cases higher
is better. Multiword anchors produce topics which are more significant than single word
anchors.

Wilcoxon’s signed-rank test [117] to determine if the differences between multiword anchors

and single word anchors are significant.

Topics from user generated multiword anchors yield higher classification accuracy

(Figure 2.4). Not only is our approach more scalable than the Interactive Topic Model, but

we also achieve higher classification accuracy than Hu et al. [52].9 Tandem anchors also

improve clustering metrics.10

While user selected tandem anchors produce better classification features than single

word anchors, users selected single word anchors produce topics with similar topic coherence

scores.11

9However, the values are not strictly comparable, as Hu et al. [52] use the standard chronological test/train
fold, and we use random splits.

10Significant at p < 0.01 when using Wilcoxon’s signed-rank test.
11The difference between coherence scores was not statistically significant using Wilcoxon’s signed-rank

test.
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To understand this phenomenon, we use quality metrics [1] for ranking topics by their

correspondence to genuine themes in the data. Significant topics are likely skewed towards

a few related words, so we measure the distance of each topic-word distribution from the

uniform distribution over words. Topics which are close to the underlying word distribution

of the entire data are likely to be vacuous, so we also measure the distance of each topic-word

distribution from the underlying word distribution. Finally, background topics are likely to

appear in a wide range of documents, while meaningful topics will appear in a smaller subset

of the data.

Figure 2.5 reports our topic significance findings. For all three significance metrics,

multiword anchors produce more significant topics than single word anchors.12 Topic coherence

is based solely on the top n words of a topic, while both accuracy and topic significance

depend on the entire topic-word distributions. With single word anchors, topics with good

coherence may still be too general. Tandem anchors enables users to produce topics with

more specific word distributions which are better features for classification.

2.5.3 Qualitative Results

We examine the qualitative differences between how users select multiword anchor facets

versus single word anchors. Table 2.2 gives examples of topics generated using different anchor

strategies. In a follow-up survey with our users, 75% find it easier to affect individual changes

in the topics using tandem anchors compared to single word anchors. Users who prefer editing

multiword anchors over single word anchors often report that multiword anchors make it

easier to merge similar topics into a single focused topic by combining anchors. For example,

by combining multiple words related to Christianity, users were able to create a topic which

is highly specific, and differentiated from general religion themes which included terms about

Atheism and Judaism.

12Significant at p < 0.01 when using Wilcoxon’s signed-rank test.
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Anchor Top Words in Topic

Automatic Gram Schmidt

love love god evolution romans heard car
game game games team hockey baseball heard

Interactive Single-word

evolution evolution theory science faith quote facts
religion religion god government state jesus israel
baseball baseball games players word teams car
hockey hockey team play games season players

Interactive Tandem

atheism god exists prove god science evidence reason faith objective
christian jesus jesus christian christ church bible christians
jew israel israel jews jewish israeli state religion
baseball bat ball hit baseball ball player games call
hockey nhl team hockey player nhl win play

Table 2.2: Comparison of topics generated for 20news using various types of anchor words.
Users are able to combine words to create more specific topics with tandem anchors.

While users find that using tandem anchors is easier, only 55% of our users say that

they prefer the final topics produced by tandem anchors compared to single word anchors.

This is in harmony with our quantitative measurements of topic coherence, and may be the

result of our stopping criteria: when users judged the topics to be useful.

However, 100% of our users feel that the topics created through interaction were better

than those generated from Gram-Schmidt anchors. This was true regardless of whether we

used tandem anchors or single word anchors.

Our participants also produce fewer topics when using multiword anchors. The mean

difference between topics under single word anchors and multiple word anchors is 9.35. In

follow up interviews, participants indicate that the easiest way to resolve an ambiguous topic

with single word anchors was to create a new anchor for each of the ambiguous terms, thus

explaining the proliferation of topics for single word anchors. In contrast, fixing an ambiguous

tandem anchor is simple: users just add more terms to the anchor facet.
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2.6 Conclusion

Tandem anchors extend the anchor words algorithm to allow multiple words to be combined

into anchor facets. For interactive topic modeling, using anchor facets in place of single word

anchors produces higher quality topic models and are more intuitive to use. Furthermore, our

approach scales much better than existing interactive topic modeling techniques, allowing

interactivity on large datasets for which interactivity was previous impossible.
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Chapter 3

Labeled Anchors: a Scalable, Transparent, and Interactive Classifier

Published in Proceedings of the Conference on Empirical Methods in Natural Language

Processing 2018 [67]

Abstract

We propose Labeled Anchors, an interactive and supervised topic model based on the anchor

words algorithm [6]. Labeled Anchors is similar to Supervised Anchors [86] in that it extends

the vector-space representation of words to include document labels. However, our formulation

also admits a classifier which requires no training beyond inferring topics, which means our

approach is also fast enough to be interactive. We run a small user study that demonstrates

that untrained users can interactively update topics in order to improve classification accuracy.

3.1 Introduction

In this paper, we concern ourselves with the problem of interactive and transparent text

classification. The value of such a classifier can be seen in the events shortly before the 2016

US presidential election when FBI Director James Comey notified Congress that the FBI

had obtained emails from candidate Hillary Clinton’s private email server which potentially

contained state secrets. Nearly a week later, just two days before the election, Comey

announced that nothing had been found in the emails that warranted prosecution. Many

speculate that the timing of these announcements may have influenced the election.
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There are times when the ability to quickly analyze large quantities of text is of

critical importance. In the case of the Clinton emails, manual inspection appears to have

been possible in one week’s time, but there could have been less controversy if the emails had

been categorized in a shorter period of time. Furthermore, in future cases the data may be

too large for manual analysis.

While there are many text classification algorithms, none are both interactive and

transparent at scale. We require interactivity because we would like to leverage human

intuition to improve classification accuracy for a specific task. Transparency not only enables

interactivity, but also allows users to inspect the classifier and gain confidence in the results.

Topic models such as Latent Dirichlet Allocation (or LDA) [16] aim to automatically

distill large collections of documents into topics. These topics can be used to perform document

classification [96]. Furthermore, work has been done to increase the human interpretability of

topics [76]. Traditionally, topic models are graphical models which typically scale poorly to

large data. A faster alternative is the Anchor Words algorithm, which relies on non-negative

matrix factorization to infer topics [6]. Ordinarily, this factorization is NP-Hard [4], but with

certain separability assumptions related to ”anchor” words which uniquely identify topics,

the factorization is scalable.

The Interactive Topic Model [52] allows human knowledge to be injected into the

model in order to shape the topics in some meaningful way. While this model does incorporate

user feedback, it is not fast enough to be truly interactive. A more scalable alternative

is Tandem Anchors, which allows users to specify anchor words in order to influence the

resulting topics [66].

A separate line of topic modeling research deals with supervised topic modeling, which

allows document labels to influence topic inference [15]. The most recent work on supervised

topic modeling is Supervised Anchors [86]. This approach uses document labels to influence

the selection of anchor words, which in turn affects the resulting topics. However, Supervised

Anchors requires a downstream classifier to be trained using topics as features.
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Our main contribution combines the idea of Tandem Anchors with Supervised Anchors

to produce text classification which is both interactive and transparent. Additionally, the

mathematical approach we take to build this classification requires no training beyond

inferring topics, unlike Supervised Anchors which requires both topic inference and significant

additional time for training a downstream classifier. While Supervised Anchors requires the

construction of an external classifier, our approach generates the classifier as part of topic

inference. Consequently, our model is extremely fast and scalable compared to Supervised

Anchors. We demonstrate that users are able to use our model to interactively improve

document classification accuracy by manipulating topics.

3.2 Labeled Anchors

In this section we describe our approach, combining interactive and supervised topic modeling,

which we call Labeled Anchors. We extend the Anchor Words algorithm [6] which takes

as input a V ×D matrix M of document-word counts and recovers a V ×K matrix A of

word probabilities conditioned by topic, where there are V word types, D documents, and K

topics. Our approach extends this algorithm to incorporate L possible document labels.

3.2.1 Vanilla Anchor Words

In order to compute the topic-word matrix A, the Anchor Words algorithm uses a V × V

cooccurrence matrix Q̄. Each entry Q̄i,j gives the conditional probability of word j occurring

after observing word i in a document. Following Appendix D.1 of Arora et al. [6], Q̄ is

obtained by row-normalizing Q, which in turn is constructed using

Q = M̄M̄T − M̂ (3.1)
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where M̄ is a normalized version of the document-word matrix M giving equal weight to

each document regardless of document length, and M̂ accounts for words not cooccurring

with themselves.

Q̄ is a V -dimensional vector-space representation of each word and is used to compute

a set of anchor words S. Each anchor word uniquely identifies a topic by having non-zero

probability in one topic only. These anchors are computed using an adaptation of the Gram-

Schmidt process from Arora et al. [6]. Once the set of anchor words S has been computed,

we reconstruct the non-anchor words as a convex combination of the anchor word vectors.

The coefficients of these combinations C are computed using exponentiated gradient descent

to optimize

Ci = argmin
Ci

DKL(Q̄i||
∑
k∈S

Ci,kQ̄k) (3.2)

where i is the ith word of the vocabulary, Q̄i is the vector-space representation of word i,

and DKL(·||·) is Kullback-Leibler divergence.1

Because the occurrence pattern of each anchor word throughout the documents must

mirror that of the topic it anchors, each coefficient Ci,j gives the conditional probability of

topic j occurring given word i. This is the inverse conditioning we desire in the topic-word

matrix A. We can therefore compute A using Bayes’ Rule by multiplying the coefficient

matrix C with the empirical probability of each word to get the probability of a word given a

particular topic.

3.2.2 Vector-Space Representations

Supervised Anchors [86] augments Q̄ by appending L additional columns to Q̄ corresponding

to the probability of words cooccurring with the L possible document labels. Because this

augmented vector-space representation includes dimensions corresponding to document labels,

both the anchor words and the resulting topics will reflect the document labels.

1Alternatively, we can use l2-norm in place of KL-divergence.
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Figure 3.1: Labeled Anchors treats labels as observed words in each labeled documents and
updates Q̄ under this assumption, creating the additional rows and columns highlighted here.

Our algorithm, called Labeled Anchors, also augments the vector-space representation

to include the L document labels. However, we do not directly modify Q̄. Instead, we treat

the L possible document labels as words and pretend that we observe these label pseudowords

directly in each labeled document. 2 A graphical representation of this is shown in Figure 3.1.

Consequently, our document-word matrix M is a (V + L)×D matrix. The first V

entries of each column of M give the word counts for a particular document. The last L

entries are zero, except for the entry corresponding to the label of that document.

We then construct Q̄ using Equation 3.1, obtaining an order V +L square matrix. As

with Supervised Anchors, these additional L dimensions guide anchor selection to include

anchors which reflect the underlying document labels. When we use Equation 3.2 to compute

C, we also obtain an additional L rows of coefficients which each correspond to the conditional

probability of a topic given a label. Finally, the first V rows of A are computed using Bayes’

Rule to give us the probability of words given topics.

Labeled Anchors inherits the run time characteristics of the original Anchor Words

algorithm. As shown in Arora et al. [6], topic recovery requires O(KV 2 +K2V T ), where V is

the size of the vocabulary, K is the number of anchors/topics, and T is the average number

of iterations (typically around 100 in our experiments). Since V � K, adding any modest

number of topics (less than 200) does not noticeably increase the runtime. Furthermore, since

2We could add multiple such words per label, but our preliminary experiments indicate that one per label
is sufficient.
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vocabulary size tends to grow logarithmically with respect to the size of the data [46], this

approach is scalable even for very large datasets.

3.2.3 Free Classifier

Note that once the cooccurrence matrix Q̄ has been computed, the recovery of the topic-word

matrix A scales with the size of the vocabulary, not the size of the data. However, Supervised

Anchors requires topic assignments for each training document3 for use as features for some

downstream classifier. Therefore, the process of building a classifier scales linearly with the

number of documents and can be time consuming compared to topic recovery.

In contrast, the formulation of Labeled Anchors allows us to construct a classifier with

no additional training. To do so, rather than using LDA with fixed topics, we employ a simple

model similar to Labeled LDA [91] with the following generative story for an individual

document containing N words:

1. Draw label ` ∼ Cat(λ)

2. For each i ∈ [1, ..., N ] :

(a) Draw topic assignment zi|` ∼ Cat(ψl)

(b) Draw word wi|zi ∼ Cat(φzi)

The prior over document labels λ is simply the proportion of each label in the training

data. We can estimate topic-label probabilities ψ using the last L rows of the coefficient

matrix C, while the word-topic probabilities φ are the first V rows of A. Using these

3This is typically done using LDA with fixed topics.
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hyperparameters, we make predictions using the following:

`∗ = argmax
`

p(`|w) = argmax
`

p(`,w) (3.3)

= argmax
`

K∑
z1=1

...
K∑

zN=1

p(`, z,w) (3.4)

= argmax
`

p(`)
N∏
i=1

K∑
zi=1

p(zi|`)p(wi|zi) (3.5)

= argmax
`

λ`

N∏
i=1

K∑
zi=1

ψ`,ziφzi, wi (3.6)

= argmax
`

logλ`+
N∑
i=1

log

(
K∑

zi=1

C`,ziAzi,wi

)
(3.7)

where Equation 3.4 unmarginalizes the probabilities across the word-topic assignments, Equa-

tion 3.5 uses the model’s conditional independencies to expand and simplify the probabilities,

Equation 3.6 explicitly uses the parameters from the generative model, and Equation 3.7

transitions to the matrix representations for these probabilities as found in Section 3.2.2. In

Equation 3.7 we also switch to log space to mitigate numeric precision issues.

3.2.4 User Interaction

Assuming that Q̄ is precomputed and fixed, Labeled Anchors is fast enough to allow interactive

modification of the topics as well as interactive display of classification accuracy, even on large

datasets. The final step to solving the problem of creating an interactive and transparent

classifier is to allow users to inject domain specific knowledge into the topic model. To do so,

we use the idea of Tandem Anchors [66], which allows users to manually select sets of words

to form anchors.

Ordinarily, anchor words can be somewhat inscrutable to human users. Because

anchor words must uniquely identify topics, good anchors are typically esoteric low-to-mid

frequency words. Intuitive, high frequency words usually appear in multiple topics. However,

if we examine Equation 3.2, we can see that the anchor words are just points in V -dimension
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#Docs #Vocab Labeled Supervised
39388 3406 .532s 17.1s
99955 4829 .886s 28.6s
990820 6648 1.10s 282s

Table 3.1: Runtime for Labeled Anchors and Supervised Anchors on various subsets of
Amazon product reviews. Labeled Anchors is dramatically faster than Supervised Anchors
and scales to much larger datasets.

space; they do not actually have to correspond to any particular word so long as that point

in space uniquely identifies a topic.

Tandem Anchors allows multiple words to form a single anchor pseudoword by comput-

ing the element-wise harmonic mean of a set of words. Since the harmonic mean tends towards

the lowest values, the resulting pseudoword anchor largely ignores superfluous cooccurrence

patterns in the constituent words. Consequently, while individual words forming the anchor

may be ambiguous, users can combine multiple ambiguous words to intuitively express a

single coherent idea.

3.3 Experimental Results

Before running a user study to validate that Labeled Anchors works as an interactive

and transparent classifier, we first run a synthetic experiment to determine the runtime

characteristics of our algorithm. We take subsets of a large collection of Amazon reviews4

to produce datasets of various sizes. Using this data, we compare the runtime of Labeled

Anchors with that of Supervised Anchors. All results are obtained using a single core of an

Intel Core i7-4770K.5

As shown in Table 3.1, Labeled Anchors is orders of magnitude faster than Supervised

Anchors, even for moderately sized datasets. Both Labeled Anchors and Supervised Anchors

require us to recover topic-word distributions, an operation which scales with the size of

the vocabulary. However, Supervised Anchors also requires us to infer document-topic

4http://jmcauley.ucsd.edu/data/amazon
5Our Python implementation is available at https://github.com/byu-aml-lab/ankura.
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distributions in order to train an external classifier, an operation which scales linearly with

the number of documents. Since vocabulary size typically grows logarithmically with respect

to the number of documents [46], Labeled Anchors scales much better than Supervised

Anchors.

When a user updates the anchors, the system must reinfer the topics, create the

classifier, and evaluate the development dataset, all within a few seconds. If the update is

too slow, the interaction will suffer due to increased cognitive load on users [28]. Results

from an exploratory user study confirm this: when participants are faced with update times

around 10 seconds, they are not successful in their topic-based tasks.6

Having established that Labeled Anchors is fast enough to be interactive, we now

demonstrate that participants can use our system to improve topics for classification. In

order to demonstrate the role of human knowledge in interactive topic modeling, we ask

the users to identify sentiment (i.e. product rating) rather than product category, since the

natural topics which arise from the Anchor Words algorithm tend to reflect product category

instead of rating. We preprocess a set of Amazon product reviews with standard tokenization,

stopword removal, and by removing words which appear in fewer than 100 documents. After

preprocessing, empty documents are discarded, resulting in 39,388 documents. We use an

80/20 train/test split, with 1,500 training documents reserved as development data. We

recruit five participants drawn from a university student body. The median age is 21. Three

are male and two are female. None of the students have any prior familiarity with topic

modeling.

We present the participants with a user interface similar to that of Lund et al. [66]7.

Users can view and edit a list of anchor words (or rather, sets of words which form each

anchor), and they can view the top ten most probable words for each topic. We display the

classification accuracy on the development data to give users an indication of how they are

doing. After a brief training on the interface, users are asked to modify the anchors to produce

6For this reason, we do not report interactive results with Supervised Anchors.
7Shown in Figure 2.3.
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Figure 3.2: User study accuracy results comparing accuracy on the development set to the
accuracy on the test set. The black horizontal line indicates the baseline accuracy from
Supervised Anchors. The black star indicates the initial accuracy using Gram-Schmidt
anchors with Labeled Anchors. The blue dots indicate various intermediate steps while
editing the anchors. The red pluses are the final states after each user completes the task.

topics which reflect the underlying product ratings and improve the classification accuracy on

the development dataset as much as possible. Participants are given forty minutes to perform

this task.

Figure 3.2 summarizes the results of our user study. With just baseline anchors from

Gram-Schmidt, the classification accuracy of Labeled Anchors is on par with that of Supervised

Anchors using logistic regression as the downstream classifier. However, because Labeled

Anchors is fast enough to allow interaction, participants are able to improve classification

accuracy on the development set by an average of 5.31%. This corresponds to a 2.31%

increase in accuracy on the test set.

We record each step of the user interactions and find a Pearson correlation coefficient

of .88 between development accuracy and test accuracy. Thus, Labeled Anchors allows

participants to interactively see updated classification accuracy and have confidence that

held-out test accuracy will also improve.

With regard to the interaction that users had with the dataset, we observe several

common strategies. Firstly, we notice that users who made more edits tend to have more

success in terms of accuracy; this validates our assertion that slower update times hurt
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performance. Secondly, users end with a median of 21 topics, which is close to the 20 topics

they start with, suggesting that either the users felt like this was an appropriate number

of topics, or that they felt uneasy drastically changing the total number of topics from

what they started with. Lastly, we find that users chose more single word anchors than we

expected, with about 88% of anchors being single word anchors. However, we note that the

multiword anchor which were used were typically short 2-3 word phrases which did not have

an obvious single word counterpart, demonstrating that using tandem anchors did still give

an appreciable benefit when combined with our labeled anchor approach.

3.4 Conclusion

Our results demonstrate that Labeled Anchors yields a classifier that is both human-

interpretable and fast. Our approach not only combines the strengths of Supervised Anchors

and Tandem Anchors, but introduces a mathematical construct for producing a classifier

as a by-product of topic inference. Compared to Supervised Anchors, which requires costly

training of a downstream classifier in addition to topic inference, our approach is much more

scalable. Using Labeled Anchors, our participants are able to adjust the classifier so as to

obtain superior classification results than those produced by Supervised Anchors alone.

Returning to our original motivating problem of quickly annotating a large collection

of unlabeled emails, we assert that our approach could aid in quickly labeling the entire

collection. With a modest investment of manual annotation, the initial training set could be

labeled, and then with the help of our system the remaining documents could be automatically

labeled in a transparent and explainable fashion.
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Part II

Token Assignment

One advantage of anchor-based topic modeling is that we separate the problem of

learning topic-word distributions from the problem of actually assigning individual topics

to tokens. Having improved anchor selection in Part I, we are now prepared to explore

methods of improving token-level topic assignment. In Chapter 4, we explore automated

evaluation of local topic quality, giving us the tools to properly compare token-level topic

assignment strategies. In Chapter 5 we use the result from Chapter 4 to experiment with

popular methods of computing topic assignments. We experiment with both traditional

coarse-grained topic models, as well as fine-grained topic models with large numbers of topics.

We find that iterated conditional modes with a per-word initialization strategy works best

in terms of local topic consistency, but that some downstream tasks such as topic-based

classification are better served by mean-field variational inference with fixed topics. Our

result in this chapter also validates the claim that fine-grained topic modeling is possible

using anchor-based topic modeling.
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Chapter 4

Automatic Evaluation of Local Topic Quality

To be submitted for publication at the Conference of the North American Chapter of the

Association of Computational Linguistics 2019

Abstract

Topic models, even recent models which claim to improve the quality of token-level topic

assignments, are typically evaluated with respect to the global topic-word distributions (e.g.,

coherence) without regard to local topic model quality found in the topic assignments. This

can be problematic when topic assignments are used as features for downstream tasks such

as document classification or when the assignments are shown to users as part of exploratory

analysis. We propose a variety of automated measures of topic assignment quality, so that

we may better understand and compare topic models at a local level. We also propose a new

task designed to elicit human judgments of local topic quality. We correlate our proposed

metrics with human evaluations on several datasets and find that a measure based on the

number of times a document switches topics is effective. While the fact that minimizing topic

switches agrees with human evaluations is intuitive, this result is surprising since our task

only shows users individual topic assignments in isolation. We suggest that this new metric,

which we call topic consistency, be adopted alongside global metrics such as topic coherence

when evaluating new topic models.
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4.1 Introduction

Topic models such as Latent Dirichlet Allocation (or LDA) [16] aim to automatically discover

topics in a collection of documents, giving users a glimpse into the common themes of the

data. Over the years, topic modeling literature has come to include a large number of different

models, applied to a wide variety of different tasks.

Given the number of available topic models, for practitioners the question of model

selection and model evaluation can be as daunting as it is important. In many cases, the

question is easily answered when the model is used for a downstream task for which evaluation

is possible (e.g., document classification). In most other cases, practitioners rely on automated

metrics such as topic coherence [83] in order to compare topic model quality.

We review coherence and other existing metrics for topic model evaluation in Section 4.2.

Generally speaking, these metrics evaluate topic models globally, meaning that the metrics

evaluate the certain characteristics of the topics (i.e., distributions over corpus vocabulary)

without regard to how the topics might be used locally.

However, in addition to producing global topic-word distributions, topic models also

attribute each individual token to a specific topic. These local topic assignments are often used

as features for downstream tasks. For example, topic-word pairs from the topic assignments

might be used as features for a topic-based document classification system. If the topic

assignments are inaccurate, the accuracy of the classifier may suffer.

Additionally, topic assignments may be used to facilitate exploratory analysis, in

which humans examine topic assignments manually to make sense of the topical content of a

document with respect to the rest of the corpus. While the global topic-word distributions

generally make sense to a user and serve to give the user a high-level overview of the general

themes and trends in the data, the quality of the local topic assignments can be bewildering

to users.

For example, Figure 4.1 shows typical topic assignments using LDA. Arguably, most,

or all, of the sentence should be assigned to the ‘Music’ topic since the sentence is about
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A dance break by P.Diddy is also featured in both
settings of the video, intercut with scenes of Mario

Winans playing the drums.

Music Film Gaming Technology

Figure 4.1: Topic assignments from LDA on a sentence from a Wikipedia document. Notice
that even noun-phrases are split in a way which is bewildering to users.

a music video for a particular song, but parts of the sentence are assigned to other topics

including ‘Gaming’ and ‘Technology’, possibly because other sentences in the same document

are concerned with those topics. Even noun-phrases, such as ‘Mario Winans’ in Figure 4.1,

which presumably should be assigned to the same topic, can be split across different topics.

This is important because accurate local topic assignments can help us classify and

understand individual documents. However, if the accuracy of token-level topic assignments

is poor, these downstream tasks and analysis may suffer even if the global topic-word

distributions are coherent.

The problem of improving local topic assignments has received some attention from

the modeling-side in topic modeling literature. For example, HMM-LDA [43] integrates

syntax and topics by allowing words to be generated from a special syntax specific topic.

TagLDA [126] adds a tag specific word distribution for each topic, allowing syntax to impose

local topic structure. The syntactic topic model, or STM, extends this idea and generates

topics using syntactic information from a parse tree. An alternative approach to improving

local topic consistency is by adding a Markov property to topic assignments. The hidden topic

Markov model (HTMM) does this by adding a switch variable on each word which determines

whether to reuse the previous topic or generate a new topic. More recently, Balikas et al.

[9] proposed SentenceLDA which assigns each sentence to a single topic. CopulaLDA [10]

supersedes SentenceLDA, and instead uses copulas to impose topic consistency within each

sentence of a document.
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Despite the apparent interest in improving the quality of local topic assignments,

topic models are still typically only evaluated with respect to global topic quality. Even the

aforementioned models which aim to improve local quality are only evaluated globally.

This paper concerns itself with the evaluation of token-level topic assignment quality

so that we may better understand which topic models produce good local topic quality for

individual documents. Following the example of previous work on global topic evaluation [83],

in Section 4.3 we first propose a variety of automated metrics designed to perform this

evaluation. Then, in Section 4.4 we propose a user study designed to elicit human evaluations

of local topic quality. We correlate those results with our proposed metrics in Section 4.5.

In Section 4.6, we discuss these results, recommend a new metric of topic model evaluation,

which we call consistency.

4.2 Global Evaluation

Early topic models such as LDA were typically evaluated using held-out likelihood or

perplexity [16]. Wallach et al. [114] gives details on how to estimate these quantities.

However, while held-out perplexity can be useful to test the generalization of predictive

models, it has been shown to be negatively correlated with human evaluations of global topic

quality [23]. These judgments were elicited using a topic-word intrusion task, in which human

evaluators are shown the top n most probable words in a topic word distribution and asked

to identify a randomly chosen ‘intruder’ word which was injected into the word list. This

task operates under the assumption that if a topic is semantically coherent, then the intruder

should be easy to identify.

While human evaluations of topic coherence are useful, automated evaluations are easier

to deploy. Consequently, Newman et al. [83] proposed a variety of automated evaluations

of topic coherence, and correlated these metrics with human evaluations with the topic-

word intrusion task. They show that an evaluation based on aggregating pointwise mutual

information (PMI) scores across the top n most likely terms in a topic distribution correlates
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well with human evaluations. We will follow a similar pattern in developing our own automated

metrics for evaluating the quality of token level topic assignments.

The PMI scores can be computed with respect to the modeled data, but more frequently

are computed using some large reference corpus such as Wikipedia. This metric, colloquially

referred to simply as coherence, is currently the most popular form of automated topic model

evaluation, although many variations exists, such as one measure which uses conditional

probabilities of the top n instead of PMI scores [76]. Note that coherence is a measure of

global topic quality, since it considers only the global topic-word distributions, without regard

to the quality of the token-level topic assignments.

Topic coherence has been well studied. For example, through certain types of regu-

larization, we can improve topic coherence [84]. Newman et al. [83] gave a methodology for

automatically performing topic-word intrusion tasks directly. Since topic coherence depends

on the choice of how many words from each topic to consider, work has been done exploring

topic cardinality with respect to coherence [59].

Since topics are typically summarized by their top n most probable words, topic

coherence is an important consideration when using topic modeling for the purpose of

exploratory analysis. However, when topics are used as features for downstream tasks such

as document classification, the characteristics of the entire topic-word distribution become

more important.

Consider for example, two topics which rank the words of the vocabulary by probability

in the same order. Suppose that one of these distributions was more uniform than the other

(i.e., had higher entropy). While both distributions would give the same interpretation

to a human examining the top n words of these topic-word distributions, the topic-word

distribution with lower entropy places more weight on the high-rank words and is much more

specific.

Using this intuition, AlSumait et al. [1] developed metrics for evaluating topic signifi-

cance. While this work was originally used to rank topics by significance, it has been used
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to characterize entire models by measuring average significance across all topics in a single

model [66].

Topic significance is evaluated by measuring the distance between topic distributions

and some background distribution. For example, we can measure the distance of the topic-

word distributions from the uniform distribution over words (SigUni). Alternatively, we

can use the the empirical distribution of words in the corpus, or the vacuous distribution

(SigVac) as our background distribution.

Like coherence, topic significance is a global measure of topic quality since it considers

the topic distributions without regard to local topic assignments. However, it differs from

topic coherence in that it considers the entire topic-word distribution. Lund et al. [66] found

that when topics were used as features for document classification, models with similar

coherence scores might perform differently on downstream classification accuracy, with better

accuracy achieved by models with higher significance scores.

4.3 Proposed Metrics

As previously mentioned, recent models such as CopulaLDA [10], which claim to improve the

quality of token-level topic assignments, have only been evaluated using global topic metrics.

We develop an automated methodology for evaluating local topic model quality. We follow

the pattern used by Newman et al. [83] to develop coherence and will propose a variety of

potential metrics. As with coherence, we correlate these automated metrics with human

evaluations in order to determine which automated metric yields the most accurate estimate

of local topic quality as judged by human annotators.

Topic Switch Percent (SwitchP) Our first proposed metric measures local topic

consistency. In a corpus with n tokens, with zi being the topic assignment of the ith word in

the corpus, and δ(i, j) being the Kronecker delta function, we measure this consistency with

1

n− 1

n−1∑
i=1

δ(zi, zi+1). (4.1)
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Essentially what this metric measures is the percent of times a topic switch occurs relative to

the number of times it could have switched.

Topic Switch Variation of Information (SwitchVI) Topic switch percent pe-

nalizes any topic switch without regard to how related the topics are. We utilize variation

of information (or VI), which measures the amount of information lost in changing from

one partition to another [73]. Assuming that our model has K topics, and once again using

zi as the topic assignment for word wi, we consider two partitions S = {S1, ..., SK} and

T = {T1, ..., TK} of the set of words w, such that Si = {wj|zj = i} and Ti = {wj|zj+1 = i}.

Variation of information is defined as

H(S) +H(T )− 2I(S, T ) (4.2)

where H(·) is entropy and I(S, T ) is the mutual information between S and T . In other

words, we measure how much information we lose in our topic assignments if we reassign

every word to the topic of the word that follows. Similar to topic switch percent, this measure

penalizes topic switches. However, models which switch consistently between the same topics

(presumably related topics) are penalized less than models which switch between topics at

random.

Average Rank (AvgRank) Even when evaluating local topic quality, the most

common way of presenting topics to humans is as a set of related words, namely the most

probable words in the topic-word distributions. Consequently, when human evaluators

consider the quality of a topic assignment, they will still by influenced by the order or

ranking of the words within a topic-word distribution, even if they are unaware of the actual

probabilities. Leveraging this intuition, where rank(wi, zi) is the rank of word i in topic i

when sorted by probability, we use the following:

1

n

n∑
i=1

rank(wi, zi) (4.3)
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With this evaluation, lower is better. The lower bound is 1, although this would

require that every word be assigned to a topic for which it is the mode, which is impossible

unless the number of topics is equal to the vocabulary size.

Topic-Word Divergence (WordDiv) The previous metrics do not take into account

the actual probabilities in the topic-word distributions. Suppose the topic-word distributions

for a topic model with K topics, V token types, and D documents are given by a K × V

matrix φ such that φi,j is the conditional probability of word j given topic i. Furthermore, let

θd be the K-dimension document-topic distribution for the dth document (possibly obtained

by normalizing the topic counts in zd), and ψd be the V -dimensional distribution of words

for document d (possibly obtained by normalizing the word counts in zd). Our next metric

measures how well the topic-word probabilities explain the words which are assigned to those

topics:

1

D

D∑
d

JSD(θd · φ||ψd) (4.4)

where JSD(P ||Q) is the Jensen-Shannon divergence between the distributions P and Q.

This formulation essentially rewards individual topic assignments which use topics which

explain the cooccurrences of an entire document rather than individual tokens.

Window Probabilities (Window) Recalling the problem illustrated in Figure 4.1

in which groups of words such as noun phrases can be split across topics, our final proposed

metric seeks to reward topic models which have topic assignments which not only explain

individual words, but also the words within a window around the assignment. Given a window

size s, and once again using φ as the topic-word distributions, we compute the following:

1

n(2s+ 1)

n∑
i

i+s∑
j=i−s

φzj ,wi
. (4.5)

In our experiments, we use a window size of s = 1, meaning that for each word we consider

its topic assignment, as well as the topic assignments for the words immediately preceding

and following the initial word.
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Dataset Documents Tokens Vocabulary Size
Amazon 39388 1389171 3406
Newsgroups 18748 1045793 2578
New York Times 9997 2190595 3328

Table 4.1: Statistics on datasets used in user study and metric evaluation.

4.4 Human Evaluations

We follow the general design philosophy employed by Newman et al. [83] in developing the

coherence metric. We learn a variety of models on various datasets in order to observe a

wide range of token-level topic quality. We then evaluate these models using not only our

proposed metrics, but using crowdsourcing data on a task designed to elicit human evaluation

of local topic model quality. By correlating the human evaluation with automated metrics,

we can determine how best to measure local topic quality. In this section, we first discuss the

models we employ, then the crowdsourcing task. While not our main result, we also discuss

the annotator agreement with each model type.

4.4.1 Datasets and Models

In order to correlate our automated metrics with human evaluations over a wide range of

topic models, we choose three datasets from different domains and with different writing

styles. These datasets include a collection of Amazon product reviews, the well known Twenty

Newsgroups dataset, and a collection of news articles from the New York Times. Following

best practices, we apply stopword removal using a standard list of stopwords. Additionally,

we remove any token which does not appear in at least 100 documents. Statistics for these

three datasets can be found in Table 4.1.

Once again aiming for a wide variety of topic models for our evaluation, for each

of these datasets, we train three types of topic models. As a baseline, we train Latent

Dirichlet Allocation [16] on each of the three datasets. Since CopulaLDA [10] is the most

recent and reportedly the best model with respect to local topic quality, we also employ
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this model on each dataset. Finally, we use the Anchor Words algorithm [6], which is a

fast and scalable alternative to traditional probabilistic topic models based on non-negative

matrix factorization. By itself, Anchor Words only recovers the topic-word distributions, so

we follow Nguyen et al. [86] and use variational inference for LDA with fixed topics to assign

each word to a topic.

In addition to varying the datasets and model types, we train each model with a

variety of different choices on the number of topics, with the hope of increasing the diversity

of observed topic model quality. For both LDA and Anchor Words, we use 20, 50, 100, 150,

and 200 for the number of topics. For CopulaLDA, we use 20, 50, and 100 for the number of

topics1. We vary the number of topics to produce models with small numbers of coherent,

albeit less significant, topics as well as models with large numbers of more significant topics,

allowing us to observe user preferences on a variety of models. Since each model includes

some amount of non-determinism, we trained five instances of each dataset, model and and

topic cardinally and averaged our results.

In the interest of reproducibility, the data, the scripts for importing and preprocessing

the data, and the code for training and evaluating these topic models are available in an

open source repository2.

4.4.2 Crowdsourcing Task

Our goal in designing a crowdsourcing task is to get human annotators to evaluate the quality

of token-level topic assignments. Not only will this task allow us to evaluate and compare

models, but it will allow us to develop automated metrics for evaluating local topic quality.

However, this is a highly subjective question and inter-annotator agreement is an issue if we

directly ask annotators to judge model quality. Instead, we prefer to ask users to perform a

task which illuminates the underlying quality indirectly. It is for this reason that previous

1Unfortunately, CopulaLDA did not scale beyond 100 topics. In contrast to LDA and Anchor Words, which
ran in minutes and seconds respectively, CopulaLDA took days to run using the authors’ implementation. Our
runs with 150 and 200 topics never finished, as they where finally killed due to excessive memory consumption.

2https://github.com/jefflund/ankura
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Figure 4.2: Example of the topic-word matching task. Users are asked to select the topic
which best explains the underlined token.

crowdsourced evaluations of topic coherence relied on the word intrusion task instead of

asking annotators to directly rate topic coherence [23].

In our proposed task, which we call topic-word matching, we show the annotator a

short snippet from the data with a single token underlined. We show the user five topic

summaries (i.e., the 10 most probable words in the topic-word distribution) and ask the

user to select the topic which best fits the underlined token. One of the five options is the

topic the model actually assigned to the underlined token, with the idea that the annotator

will agree more often with a topic model which makes accurate local topic assignments. As

alternatives to the model selected topic, we also include the three most probable topics in

the entire document outside the topic the model selected for the underlined token. Since

these topics likely appear in the same document, they may be somewhat related. However, a

model which gives high quality token-level topic assignments should be able to consistently

use the best possible topic for each individual token. That said, as seen in Figure 4.1, models

such as LDA can struggle with this. Finally, we include a randomly selected intruder topic as

a fifth option. This fifth option is included to help distinguish between an instance where

the user sees equally reasonable topics for the underlined token (in which case, the intruding

topic will not be selected), and when there are no reasonable options for the underlined token

(in which case, all five topics are equally likely to be chosen). Figure 4.2 shows an example of

this task shown to annotators.

For each of our 39 trained models (i.e., for each model type, dataset, and topic

cardinality), we randomly select 1000 words to annotate. For each of the 39,000 selected words,
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we obtain 5 judgments. We aggregate the 5 judgments by selecting the contributor response

with the highest confidence, with agreement weighted by contributor trust. Contributor trust

is based on accuracy on test questions.

We deploy this task on a popular crowdsourcing website3 and pay contributors

$0.12 USD per page, with 10 annotations per page. For quality control on this task, each

page contains one test question. The test questions in our initial piloted studies are questions

we hand-select for their obvious nature. In the final study we use to obtain the results

in Section 4.5, we also select a number of questions from the pilot studies with both high

annotator confidence and perfect agreement to augment our bank of test questions. We

require that contributors maintain at least a 70% accuracy on test questions throughout

the job, and that they spend at least 30 seconds per page, but otherwise impose no other

constraints on contributors.

4.4.3 Agreement Results

The main purpose of our user study is facilitate the exploration of automated evaluation

techniques which correlate with human judgments of local topic quality. However, the results

of our user study are interesting in their own right, so we briefly discuss them here.

We first measure inter-annotator agreement using Krippendorff’s alpha with a nominal

level of measurement [56]. Generally speaking, α = 1 indicates perfect reliability, while α < 0

indicates systematic disagreement. Over all the judgments we obtain, we compute a value of

α = .44. While this is nowhere near perfect agreement, this does indicate a moderate level of

agreement.

Proper interpretation of this value is somewhat subjective. For comparison, we note

the example given by Krippendorff [56] in which English-speaking annotators where tasked

with assigning television characters to categories with Dutch names. On this task, annotators

3https://www.figure-eight.com
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Figure 4.3: Plot showing human agreement with each model type. CopulaLDA performs
slightly worse than LDA. Humans preferred topic assignments from Anchor Words by a wide
margin.

also obtained α = .44, which is coincidentally close to the value our annotators achieved on

the topic-word matching task.

We note that when using crowdsourcing, particularly with subjective tasks such as

topic-word matching, we expect somewhat low inter-annotator agreement. However, previous

results indicate that when properly aggregated, we can still filter out noisy judgments and

obtain reasonable opinions [87].

Our ultimate goal with using a wide variety of topic models was to obtain a wide

range of local topic model quality so that we can determine which automated evaluation

correleates best with human judgments. Figure 4.3 summarizes the human agreement with

the three different model types. Surprisingly, despite claiming to produce superior local topic

quality, and despite performing better than LDA in terms of perplexity (a global measure

of topic quality), according to our results with the topic-word matching task, CopulaLDA
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actually performs slightly worse than LDA. We contend that this perfectly illustrates the

need for automated metrics measuring local topic quality.

Equally surprising is the fact that users agree with Anchor Words more often than

LDA by a wide margin, indicating that Anchor Words achieves superior token level topic

assignments. However, in terms of global topic quality, Anchor Words is roughly similar

to LDA [6]. One possible explanation is that Anchor Words separates the task of learning

the global topic-word distributions from the problem of producing accurate local topic

assignments, making both tasks easier. Of course, for many tasks an argument can be made

for a joint-model, so further investigation into this phenomenon is warranted.

4.5 Automated Evaluations

We now turn our attention to the correlation between the human judgments obtained in

Section 4.4.3 and the automated evaluations proposed in Section 4.3.

For each of our proposed metrics, we compute a least-squares regression for both the

proposed metric and the human-model agreement on the topic-word matching task. As seen

in Table 4.2, we report the coefficient of determination (r2) for each metric and dataset.

Metric Amazon Newsgroups New York Times

Local Metrics

SwitchP 0.9077 0.8737 0.7022
SwitchVI 0.8485 0.8181 0.6977
AvgRank 0.5103 0.5089 0.4473
WordDiv 0.3112 0.2197 0.0836
Window 0.4884 0.3024 0.1127

Global Metrics
Coherence 0.4907 0.4463 0.3799
SigUni 0.6310 0.4839 0.4935
SigVac 0.6960 0.6081 0.6063

Table 4.2: Coefficient of determination (r2) between automated metrics and crowdsourced
topic-word matching annotations. We include metrics measuring both local topic quality
such as switchp and measures of global topic quality such as coherence and significance.

Generally speaking, we find that humans agree more often with models trained on

Amazon than on New York Times. This reflects the underlying data, since Amazon product
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reviews tend to be highly focused on specific products and product features and the topics

naturally reflect those products. In contrast, New York Times data deals with a much wider

array of subjects, and treats them with nuance and detail not found in typical product

reviews, making the judgments more difficult and subjective.

Notwithstanding the differences across datasets, on all datasets, SwitchP most closely

approximates human judgments of local topic quality, with an r2 which indicates a strong

correlation. This suggests that when humans examine token-level topic assignments, they

are likely to value topic models which are locally consistent, meaning they are unlikely to

switch topics from one token to the next. As evidenced by the lower r2 for SwitchVI, even

switching between related topics seems to contradict human judgments of local topic quality.

We also note that there is a correlation between coherence and the topic-word matching

task, although the correlation is only moderate. Similarly, word-based significance metrics

have a moderate correlation with topic-word matching. We maintain that these global topic

metrics are important measures for topic model quality, but they fail to capture local topic

quality as SwitchP does.

4.6 Discussion

Considering the intuition gained from the motivating example in Figure 4.1, it is not surprising

that humans would prefer topic models which are locally consistent. Historically speaking,

the fact that many topic models switch between topics so frequently is confusing to users.

Thus, our result that SwitchP is correlated with human judgments of local topic quality is

intuitive.

However, we note that our annotators were only shown single topic assignment in

isolation. Since they were only shown the topic assignment for a single word, they could

not have known whether the underlying model was locally consistent or not. Despite this,

our annotators apparently preferred models which were consistent. Thus, while our result
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is intuitive, the fact that this result was illuminated through such an indirect measure is

surprising.

Given our results, we recommend that topic switch percent be adopted as an automated

metric to measure the quality of token-level topic assignments. We would refer to this metric

colloquially as topic consistency in much the same way that PMI scores on the top n words

of a topic are referred to as topic coherence. We advocate that future work on new topic

models include validation with respect to topic consistency, just as most recent work has

included evaluation of topic coherence.

However, we are careful to point out that topic consistency should not be used to the

exclusion of other measures of topic model quality. After all, topic consistency is trivially

maximized by simply minimizing topic switches without regard to the appropriateness of

the topic assignment. Instead, we advocate that future models be evaluated with respect to

global topic quality (e.g., coherence, significance, perplexity) as well as local topic quality

(i.e., consistency). These measures, in addition to evaluation of applicable downstream tasks

(e.g., classification accuracy) will give modelers and practitioners the information necessary

to make informed decisions about model selection.

4.7 Conclusion

We develop a novel crowdsourcing task, which we call topic-word matching, to illicit human

judgments of local topic model quality. Contrary to expectation, we find that CopulaLDA

actually performs worse than other models with respect to this task. We apply this human

evaluation to a wide variety of models, and find that topic switch percent or SwitchP

correlates well with this human evaluation. We propose that this new metric, which we

colloquially refer to as topic consistency, be adopted alongside measures of global topic quality

for future work with topic model comparison.
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Chapter 5

Token Level Topic Assignments

Abstract

Having established a method for evaluating topic consistency in Chapter 4, we now turn

our attention to the problem of how best to produce token level topic assignments using

fixed topics from the Anchor Algorithm. We experiment with both traditional coarse-grained

topics models (e.g., a small number of topics) as well as fine-grained topic models which

have large numbers of topics and try several assignment strategies including Gibbs sampling,

mean field variational inference, and iterated conditional modes. We find that combining

a per-word initialization with iterated conditional modes yields the best topic consistency,

followed closely by mean-field variational inference. However, we also note that some tasks

such as topic-based classification are best served by variational inference, albeit at the cost of

a decrease in topic consistency.

5.1 Introduction

In Chapter 4, we established topic consistency (measured by the percent of words which

switch topics from the preceding word) as an effective proxy for human evaluation of local

topic quality. In this chapter, we build on this work to investigate the best way to produce

token level topic assignments using fixed topics recovered by the Anchor Algorithm proposed

by Arora et al. [6].

Under certain assumptions of separability [34], the anchor algorithm is able to provably

recover the topic-word probabilities in polynomial time within certain bounds of accuracy [6].
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However, recovery of the document-topic probabilities is expensive and uses a numerically

unstable matrix inversion [4]. Consequently, practitioners utilizing the anchor algorithm

typically infer per word topic assignments using Latent Dirichlet Allocation [16] with fixed

topics1 learned with the anchor algorithm. This inference is typically performed using mean

field variational inference [86], since it has been shown to perform well for Latent Dirichlet

Allocation in general [8].

However, other inference techniques have been used in conjunction with Latent Dirichlet

Allocation. Since the problem of exact inference inference is NP-Hard [103], exact techniques

such as expectation propagation [78] or belief propagation [89] have mostly been ruled out

due to scalability issues. Instead, approximate inference algorithms such as expectation

maximization [33] and Gibbs sampling [42] have been used. Gibbs sampling in particular is

a very popular technique, since it is both easy to implement and performs well on several

global measures of topic model quality. However, when paired with the hyperparameter

optimization described by Wallach [112], variational inference performs as well as Gibbs

sampling while being much more scalable [8].

More recent work has highlighted the potential usefulness of iterated conditional modes

as an inference technique for topic models [65]. While iterated conditional modes has been

known for some time [11], it has only recently received attention in topic modeling literature

as a potential inference technique for facilitating interactive topic modeling. Fundamentally,

iterated conditional modes is a hill climbing algorithm, so it will only find locally optimal

solutions. Consequently, inference can be greatly affected by the initialization method.

Despite the wealth of literature exploring the full problem of inference for Latent

Dirichlet Allocation and other similar models, no work has been done comparing inference

techniques in the presence of fixed topics, much less topics obtained using the Anchor Words

algorithm. This chapter explores this space and attempts to answer the question of the

1Latent Dirichlet Allocation with fixed topics is occasionally referred to as Latent Dirichlet Allocation
with Static Topic-Word Distributions, or Explicit Dirichlet Allocation in the special case that the prior over
the topic-word distributions is zero [45].
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best method for making token level topic assignments. We first give a brief overview of the

inference techniques we will explore. After introducing our experimental design, we then

present our results in two parts: first for a typical number of topics, and then for a much

higher number of topics suitable for fine-grained topic modeling.

5.2 Inference Techniques

Variational Inference When computing a maximum a posteriori estimate for a posterior

of the form p(θ|w), variational inference seeks to minimize the Kullback-Leibler divergence

between the true distribution p and an approximate but tractable distribution q [110]. In

topic modeling literature, this approximate distribution is typically chosen using the mean

field assumption, meaning that we fully factorize the exact distribution p as a product of

marginals so that q has the form:

q(θ) =
∏
i

qi(θi). (5.1)

Using the mean field assumption, we can perform updates that are algorithmically similar to

expectation maximization to iteratively minimize the distance between p and q.

We note that the derivation of the variational updates can be difficult to produce, and

many models do have published variation inference update equations. However, the updates

for Latent Dirichlet Allocation are well known [16]. For our experiments, we utilize online

stochastic variational updates [47] implemented by the popular Gensim package2 modified to

perform inference with fixed topics.

Gibbs Sampling Another popular technique for inference with Latent Dirichlet

Allocation is Gibbs sampling [42]. A Markov chain is obtained by iteratively sampling the

2https://radimrehurek.com/gensim
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topic assignment for each word according to the full conditional

p(zdi|z¬di, w) ∝ (nd,zi,· + α)
n·,zi,wi

+ β

n·,·,wi
+ V β

(5.2)

where zdi is the topic assignment for the ith word of the dth document, z¬di is all of the

topic assignments excluding the i word of the dth document, w is all the words of the corpus,

nd,t,v is the count of words of type v assigned to topic t in document d, and dots represent

marginalization over the replaced variable.

This method is straightforward to implement and has is available in a wide variety

of software packages, including for the case when the topic-word distributions are fixed and

represented by the topic-word counts n·,t,v. We use the implementation from the Ankura

toolkit3.

Iterated Conditional Modes Iterated conditional modes (or ICM) is a hill climbing

technique related to Gibbs sampling. Rather than sampling a value for each latent variable,

we instead maximize the full conditional. This maximization is performed iteratively on each

latent variable until convergence. For Latent Dirichlet Allocation, this simply means applying

the argmax to Equation 5.2. In our experiments, we use a modified version of the Gibbs

sampler in the Ankura toolkit to perform iterated conditional modes.

While this technique has been known for some time [11], it has recently been given

attention in topic modeling literature for the purpose of interactive topic modeling [65].

While iterated conditional modes is fast enough for interactive topic models, the algorithm

is fundamentally coordinate-wise ascent, so some care must be taken with the choice of

initialization. If a poor initialization strategy is used, then the algorithm is susceptible to

poor local maxima. Consequently, in addition to reporting the results after a single run with

uniform random initialization, we will also experiment with several initialization techniques:

Random Restart Typically, both Gibbs sampling and iterated conditional modes are

initialized by assigning each word to a topic using a uniform distribution over topics. Uniform

3https://github.com/jefflund/ankura
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random initialization does have problems with poor local maxima, but this can be mitigated

to some degree by using random restart, or taking the maximum of some number of randomly

chosen initializations. One advantage of this technique is that it is simple to implement and

is embarrassingly parallel. In our preliminary experiments, we found that by taking the best

of just 10 random restarts, we were able to significantly boost performance.

Per-Word Initialization Rather than initialize the per-word topic assignments using a

uniform random distribution, an obvious strategy is to initialize each word using the topic

that gives the most mass to the individual word. Because of polysemy, and the fact that

Equation 5.2 encourages documents to use a small number of topics, this initialization will

likely not be a local maximization, but it is more likely to at least start with promising topics.

5.3 Experimental Setup

In order to explore the space of token assignment strategies, we will utilize three different

datasets, each with its own domain and writing style. These datasets include a collection

of Amazon product reviews, the well known Twenty Newsgroups dataset, and a collection

of news articles from the New York Times. On each of these datasets, we learn two sets of

topics using the Anchor Words algorithm: one for standard coarse-grained topic modeling,

and another with a larger number of topics for fine-grained topic modeling.

For both sets of topics, we apply standard tokenization and stopword removal. For

the coarse-grained topics, we also apply standard vocabulary pruning, by removing any word

which appears in fewer than 150 documents. For fine-grained topics, we need less aggressive

vocabulary pruning so that there are enough terms in the vocabulary to allow a meaningful

selection of a large number of anchor words. For our experiments with fine-grained topics, we

use a value of 15 for this threshold.

We determine the number of topics to be used based on the number of documents

in each dataset, with the intuition that the relationship between the number of documents

and the number of topics determines the number of documents each topic must explain. For
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Dataset Documents Vocabulary Size (Coarse/Fine) #Topics (Coarse/Fine)
Amazon 39388 3406 / 12428 40 / 2000
Newsgroups 18748 2578 / 12422 20 / 1000
New York Times 9997 3328 / 18800 10 / 500

Table 5.1: Statistics on datasets and number of topics used in the study of token level topic
assignments.

example, there are 18748 documents in the Twenty Newsgroups dataset. With a typical

number of topics, say 100, each topic is responsible for roughly 187 documents, which is

fairly coarse granularity. On the other hand, if we use 1000 topics, each topic must only

explain an average of about 19 documents, which is much more fine- grained.4 Table 5.1

summarizes the datasets and choices on the number of topics. Note that for the fine-grained

topics, the threshold on how many documents a word must appear in before being considered

as a candidate anchor must be decreased. For coarse-grained topics, we use the default of

500 documents, as per Arora et al. [6]. For fine-grained topics, we lower this threshold to 15

documents (matching the rare word threshold), since with a more standard threshold there

are not enough words to form the number of anchors we need for each topic to explain a

smaller number of documents.

For both topic-word distributions, we then employ each of the proposed assignment

techniques discussed in Section 5.2. Since the topic-word distributions are fixed, global

evaluations such as coherence are not useful for distinguishing between token assignment

strategies. However, as discussed in Chapter 4, there are several ways we can evaluate

the local topic quality. Most importantly, we will measure the local topic consistency by

computing the percentage of words which share a topic its preceding word in a document. We

also utilize a measure of topic significance introduced by AlSumait et al. [1], which computes

the the distance of the uniform distribution over topics from the distribution of topics across

documents.5 Finally, we can use a downstream task, namely document classification, as a

4This assumes that each topic is used in roughly equal proportions, which is not necessarily the case
depending on the assignment method.

5AlSumait et al. [1] also provide ways of measuring significance using topic-word distributions. However,
these measures ignore the actual assignments and would be the same for each assignment strategy.
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Dataset Algorithm Consistency (Coarse) Consistency (Fine)

Newsgroups

Gibbs 0.026 0.001
ICM+Single 0.705 0.187
ICM+Restart 0.628 0.209
ICM+Word Init 0.709 0.265
Variational 0.553 0.250

Amazon

Gibbs 0.051 0.001
ICM+Single 0.911 0.264
ICM+Restart 0.851 0.266
ICM+Word Init 0.929 0.252
Variational 0.833 0.257

New York Times

Gibbs 0.102 0.002
ICM+Single 0.978 0.194
ICM+Restart 0.973 0.185
ICM+Word Init 0.981 0.172
Variational 0.929 0.133

Table 5.2: Topic consistency results. Higher is better. Bold indicates the best result across
each dataset and topic set. Coarse topics results is more consistent models. However,
regardless of topic granularity, ICM+Word Init yields the most locally consistent topic
assignments except for New York Times with fine-grained topics.

proxy for local topic quality. We use a simple linear classifier with hinge loss6. We use the

per-document topic assignments as features with which to train a classifier and then evaluate

accuracy on a held-out test set. For Amazon, we predict product ratings. For Newsgroups,

we predict the newsgroup from which each document originated. While our New York Times

data is useful from the standpoint that comes from a drastically different domain than our

other datasets, it contains no predictable metadata, so it will only be evaluated with respect

to consistency and significance.

5.4 Results

Table 5.2 reports the topic consistency results as measured by the percentage of words which

switch topics from the topic of the previous word. Unsurprisingly, when there are fewer

topics, topic switches occur less often, since each topic must explain more words in the data.

However, regardless of the topic granularity, the topic assignment strategy can have an impact

6http://hunch.net/~vw
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Dataset Algorithm Significance (Coarse) Significance (Fine)

Newsgroups

Gibbs 0.817 3.775
ICM+Single 3.198 5.854
ICM+Restart 3.112 5.948
ICM+Word Init 3.293 6.133
Variational 2.435 5.419

Amazon

Gibbs 0.553 3.656
ICM+Single 2.846 5.567
ICM+Restart 2.775 5.537
ICM+Word Init 2.951 6.361
Variational 2.302 4.664

New York Times

Gibbs 0.041 1.017
ICM+Single 2.726 3.789
ICM+Restart 2.682 3.736
ICM+Word Init 3.045 3.459
Variational 1.84 2.736

Table 5.3: Topic significance as measured by divergence from the background document-topic
distribution. Higher significance values are better. Bold indicates the best result across
dataset and topic sets. Iterated Conditional Modes (ICM) yields the most significant topics,
except for New York Times with fine-grained topics.

on the local topic consistency. Notably, Gibbs sampling yields very inconsistent results,

while iterated conditional modes is more locally consistent. Given that Gibbs sampling is

competitive with variational inference with global measures such as perplexity, this result

may seem surprising. However, Gibbs sampling is meant to explore the entire posterior

distribution, and purposefully samples new values for topic assignments, meaning that it

is locally inconsistent by design. Perhaps most interesting is the fact that while iterated

conditional modes yields the most consistent result, no one initialization strategy dominates

the others, meaning that maximizing the probability of the data does not necessarily correlate

with a more locally consistent topic model.

The higher consistency of iterated conditional modes is explained by the topic signifi-

cance results shown in Table 5.3. Here topic significance is measured by the Kullback-Leibler

divergence of the distribution of topics across documents from the uniform distribution across

documents, with the idea that a significant topic will appear in a small number of documents

rather than appear in a wide variety of documents. From the topic significance results, we see
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Dataset Algorithm Accuracy (Coarse) Accuracy (Fine)

Newsgroups

Gibbs 59.9% 26.1%
ICM+Single 49.3% 43.2%
ICM+Restart 55.4% 54.5%
ICM+Word Init 61.5% 81.2%
Variational 65.3% 83.7%

Amazon

Gibbs 67.3% 57.7%
ICM+Single 64.4% 60.7%
ICM+Restart 66.3% 62.4%
ICM+Word Init 66.3% 68.5%
Variational 67.1% 69.1%

Table 5.4: Classification accuracy results. Bold indicates the best result across dataset. When
paired with a good assignment strategy, fine-grained topics improves classification accuracy
over standard coarse-grained topics.

that iterated conditional modes outperforms both Gibbs sampling and variational inference.

Since each document is focused on fewer, more significant topics, it is not surprising that

there were fewer topic switches when using iterated conditional modes.

Higher topic significance (at least with respect to document-topic distributions) matters

because it allows a more nuanced view of individual documents. As an example, consider two

sets of topics learned from the Twenty Newsgroups dataset which deal with religious issues

shown in Table 5.5. For the coarse-grained topics, there are only three topics which deal

with religion. These three topics do not directly correspond to the three religious newsgroups

found in the data (namely, ‘talk.religion.misc’, ‘alt.atheism’, and ‘soc.religion.christian’). On

the other hand, a number of religious topics are found in the fine-grained topics (only a

small number of of them are shown in Table 5.5). From the small selection of religious topics

shown, we see a topic corresponding to a discussion of the origins of the Bible found on

‘talk.religion.misc’, a discussion of cults found in ‘alt.atheism’, and a discussion around the

philosophical problem of evil found in both ‘alt.atheism’ and ‘soc.religion.christian’.

The fine-grained topics are more nuanced and detailed. However, despite using the

same set of fine-grained topics, the topic significance as measured by the document-topic

distributions vary depending on the topic assignment strategy. Gibbs sampling, for example,
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Granularity Top Topic Words

Coarse
jesus christ christian paul christians
religion christian government religious jewish
bible read church book christianity

Fine

jesus christ heaven sin father
religion religious cult atheist atheism
god son lord faith peace
bible translation accurate scripture authority
christian faith church christians christianity
accept creation nature evil choice

. . .

Table 5.5: Example of topics inferred from the 20 Newsgroups dataset. These particular
topics are topics which deal with religious issues. For coarse-grained topics, all three religious
topics are shown. For fine-grained, only a small sample of the religious topics are shown.
Fine-grained topics are much more nuanced and detailed.

exhibits much lower topic significance, meaning that these nuanced topics are much more

evenly spread out across documents, making it more difficult to find specific documents or

passages which are closely related to a fine-grained topic. Recall that in this case, topic

significance is measured using Kullback-Leibler divergence of the document-topic distribution

from the uniform distribution over topics. Thus, we can interpret the significance numbers as

information gain with respect to the uniform distribution and we can say that a good topic

assignment strategy such as iterated conditional modes with per-word initialization covers

nearly twice the information as a poor strategy like Gibbs sampling, despite both using the

exact same set of topics. In other words, the nuanced topics provided by a large number of

anchor words are much more useful when combined with an effective assignment strategy.

Another place where we can see the effects of topic significance is with respect to

downstream classification accuracy. Table 5.4 shows these classification results. For both 20

Newsgroups and Amazon product reviews, we see that it is possible to achieve a significant

boost in classification accuracy when making predictions using fine-grained topics as features.

The boost in classification accuracy from variational inference suggests that not only does

this strategy offer more topic significance than many of the alternatives, but the assignments

it makes are more accurate than the competing assignment strategies.
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5.5 Conclusion

This chapter provide two important contributions. First, we demonstrate that some topic

assignment strategies are more effective than others. With regards to topic consistency and

topic significance, iterated conditional modes with per-word initialization seems to do very

well. With regards to topic-based classification accuracy, variational inference performs well.

Gibbs sampling is a poor assignment strategy with respect to topic consistency despite its

popularity with Latent Dirichlet Allocation.

Second, we demonstrate that when combined with an effective topic assignment

strategy, we can greatly increase the number of topics in our topic model. These more

fine-grained topics are much more nuanced than traditional coarse-grained topics, and can be

useful for improving performance on downstream tasks such as topic-based classification.

We note that this is not possible with traditional probabilistic topic model using

models such as LDA. Wallach et al. [113] demonstrated that with proper hyperparameter

optimization, LDA tends to only use a small (less than 100) number of topics. The remain

topics are simply not used by the model. This is likely because the conditional distributions

for LDA exhibit a “rich get richer” characteristic where topics which have many assignments

are more likely to be reused for subsequent assignments.

In contrast, our approach using many fine-grained topics separates the problem of

learning the topic-word distributions from the task of making the token-level topic assignments.

We suggest that this approach will open up new use cases for topic modeling which require

more nuanced and accurate topics than traditional topic modeling approaches allow.
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Part III

Application

Our main motivation and thesis statement throughout this dissertation has been that

fine-grained topic modeling enables new topic-based applications which are not currently

possible using using traditional coarse-grained topics. While there are many such applications,

in Part III we focus on the problem of automatic generation of cross-references. This problem

attempts to link individual passages of text to other topically relevant passages in the same

corpus. In Chapter 6 we explore this application, combining results from previous chapters

to develop a cost-effective system for producing new cross-reference resources. We claim

that the success of this system compared to approaches utilizing coarse-grained topic models

validates our thesis statement.
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Chapter 6

Cross-Referencing Using Fine-Grained Topic Modeling

To be submitted for publication at the Conference of the North American Chapter of the 

Association of Computational Linguistics 2019

Abstract

Cross-referencing, which links passages of text to other related passages, can be a valuable 

study aid for facilitating comprehension of a text. However, because of the prohibitive cost 

of producing cross-reference resources, they only exist for the most well-studied texts (e.g., 

religious texts). We develop a topic-based system for automatically producing candidate 

cross-references which can be easily verified by human annotators. Our system utilizes 

fine-grained topic modeling with thousands of highly nuanced and specific topics to identify 

verse pairs which are topically related. We demonstrate that our system can be cost effective 

compared to having annotators acquire the expertise necessary to produce cross-reference 

resources unaided.

6.1 Introduction

Cross-references, or references from one part of a text to other parts of a text, can help 

to elaborate upon or clarify a particular passage of text, and can be a useful tool for deep 

understanding of a text. Cross-references can also be used to form a network structure which 

can be used to analyze the relational structure of a text. The existence of a thorough and 

complete cross-reference resource can facilitate better scholarship of a text and help readers
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to quickly find clarifying information. In contrast to a word concordance, which simply shows

passages which share a common keyword, cross-references often include links which do not

necessarily share the same keywords, but are still related in some important way.

However, the process of creating such a resource can be expensive and time consuming.

For example, the LDS edition of the Bible1 published by the Church of Jesus Christ of

Latter-day Saints which added numerous cross-references and topic-based categories, took

hundreds of volunteers thousands of hours over seven years to produce [2]. This process

involved collecting more than 19,900 manually curated entries from volunteers, and then

editing and refining those references with a small committee of experts down to a final

cross-reference database containing 12,475 entries.

Compared to annotation tasks such as part-of-speech tagging, producing cross-reference

annotations is a much more labor intensive task. This is because annotators must become

intimately familiar with a text in order to note that a particular passage is related to another

passage they happen to recall. This level of familiarity and expertise with a particular text is

not typically found unless the annotator has spent a great deal of time studying and rereading

the text. In contrast, for tasks such as tagging, annotators can be shown individual sentences,

and the annotation can be made with no familiarity with outside passages. We can of course

ask annotators to evaluate individual cross-references by showing them two short passages

and asking them if the two passages are in fact related, but because the number of potential

cross-references grows quadratically with the size of the data, we need a way to filter potential

cross-references to a manageable size.

For this reason, expansive cross-references have only been produced for the most

well-studied texts (e.g., religious texts). Other texts, such as academic textbooks may include

indices or other similar references, but these tend to be sparse, focusing on a small number of

keywords rather than linking each individual passage with other relevant passages. Our goal

in this chapter is to produce a system which utilizes fine-grained topic modeling in order to

1https://www.lds.org/scriptures/bible
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dramatically lower the cost of producing a cross-reference resource for new texts. We do not

expect that such a system will be perfect, but we hope that the system could be accurate

enough to allow for annotators to simply review the proposed cross-references and associated

passages without having to deeply understand the entire text.

6.2 Methodology

In this section, we describe our experimental setup, and how we approach the problem of

automatically cross-reference generation.

6.2.1 Cross-reference Datasets

While exact statistics are impossible to obtain, the number of printed copies of the Bible is

estimated to be more than 5 billion [44]. Because of the way Christians think about this text,

it is perhaps the most well-studied text of all time, and one of the few texts in the world with

extensive cross-reference data. While we aim to produce a method which works generally, we

utilize the English Standard Version of the Holy Bible [12], since we have no ground truth for

other secular texts in order to properly validate our method. We use this specific translation

of the Bible because it is used on openbible.info. While our work focuses on this specific

religious text, we hope that our work can be applied in the future to other texts, including

literary classics and collections of historical documents.

To aid any readers who are unfamiliar with this religious text, we note that the term

‘verse’ refers to a short division of a chapter. The entirety of the text is divided up into books.

Typically individual verses are referenced by the name of the book, the chapter number, and

the verse number, e.g., Isaiah 25:8. For convenience, each verse reference in electronic versions

of this paper is a hyperlink to openbible.info, showing the verse along with associated

cross-references. For the sake of narrowing our focus, our efforts in cross-referencing the Bible

will focus on finding topically related verses, though other work could potentially link larger

passages, such as entire chapters or passages spanning multiple verses.
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Figure 6.1: Voting interface for cross-reference data from openbible.info.

As a ground truth for cross-references, we utilize two sources. The first is the “Treasury

of Scripture Knowledge, Enhanced” [80] (an extended version of the original “Treasury of

Scripture Knowledge” [107]), which includes 670,796 cross-references between the 31,085

verses of the Bible. To our knowledge, this is the most exhaustive resource of human curated

cross-references for the Bible to date. We will denote this cross-reference dataset as TSKE.

The second source of ground truth cross-references is a dataset from openbible.info.

This dataset was seeded with various public domain cross-reference data, including the

Treasury of Scripture Knowledge. As shown in Figure 6.1, users search for a verse they are

interested in, and can then vote on whether they found a particular cross-reference to be

helpful or not. With each helpful or not helpful vote counting as +1 and -1 respectively, the

dataset includes the net result of the votes for each included cross-reference.

Thus, we can filter the dataset of cross-references based on how helpful each verse

was rated to be. Counting only those cross-references which have a non-negative vote

total, this dataset contains 344,441 cross-references. In figures, we denote this subset of the

openbible.net cross-reference dataset as OpenBible+0. We also use the subset of cross-
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references which received a net total of 5 helpful votes. This subset, denoted as OpenBible+5,

has 50,098 cross-references.

We do note however that the voting data does have some skewness in the number of

votes for each cross-reference. The overwhelming majority of cross-references received fewer

than five total votes for or against the reference. A small number of verses, including both

popular verses as well as verses which happen to come from the very beginning of the Bible,

can receive hundreds of votes.

6.2.2 Baselines for Automated Cross-reference Generation

These cross-reference datasets where produced at a tremendous cost in time and human

efforts. To the best of our knowledge, efforts at automating this process are limited and

have not received much attention in computer science literature. That said, a reasonable

baseline for automated efforts is a simple word-based concordance, which lists words along

with references to where the words occur in the text2.

Using the TSKE as the ground truth for cross-references, this simple baseline will

recover roughly 65% of the cross-references. For example, as shown in Figure 6.1 and assuming

that stemming is performed, the verse Isaiah 25:8 would be properly linked to 1 Corinthians

15:54 due to the two verses sharing the terms ‘death’ and ‘swallow’. On the other hand, verses

such as Hosea 13:14 or 1 Corinthians 15:55 which reference the ‘sting of death’ in Isaiah 25:8

should not be linked to verses such as Revelation 9:10, which references the sting of a scorpion.

For this reason, roughly 99% of cross-references found using word-based concordance are

spurious according to the Treasury of Scripture Knowledge, making this baseline less useful

as a cross-referencing resource.3 We refer to this baseline as word match.

As a slightly stronger baseline, we also consider a topical concordance in which verses

assigned to the same topic by some topic model are considered to be linked. We refer to this

2As an example of such a concordance for the King James Version of the Bible, see Strong’s Concor-
dance [104].

3For this reason, published biblical word concordances typically only give a manually curated subset of
significant vocabulary terms.
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baseline as topic match. For example, suppose that a topic model included a topic which 

gives high probability to terms such as ‘death’, ‘swallow’, ‘victory’ and ‘sting’. Assuming 

such a model would make topic assignments associating the previously mentioned verse with 

this topic, then verses such as Isaiah 25:8, Hosea 13:14, and 1 Corinthians 14:54 would be 

linked, but Revelation 9:10 which uses the term ‘sting’ in a different context (i.e., the sting of 

a scorpion) would not likely be linked.

We can further increase the precision of this baseline by only linking references which 

share a topic and a word, although this does come at the cost of recall. We refer to this final 

baseline method as topic-word match4.

6.2.3 Topic-Based Cross-Referencing

We now describe our approach to topic-based cross-referencing. The baseline approaches 

based on building word or topic concordances simply propose any cross-reference for which a 

word or topic matches another verse, meaning that we cannot set a threshold on the quality of 

the proposed cross-references. Instead, we propose comparing document-topic distributions as 

K-dimensional vectors, where K is the number of topics, and using standard vector distance 

metrics to compare verses. This idea has been used before [108], although not for the task of 

producing cross-references. By using a vector distance metric to compare the topical similarity 

of verse pairs, we can set a threshold on the number of proposed cross-references and propose 

only the most topically related verse pairs as cross-references. We experiment with four 

distance metrics: cosine distance, Euclidean distance, cityblock (or Manhattan) distance, and 

Chebyshev distance. However, given that previous work comparing document-topic vectors 

from LDA seem to default to cosine similarity [27, 108], we expect that cosine distance will 

be the best metric for selecting cross-references.

4Note that this is not the same thing as the topic-word matching task described in Chapter 4.
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6.2.4 Model Selection

We claim that a fine-grained topic model, i.e., a topic model with a large number of highly

nuanced topics, will be able to provide more value for tasks like cross-referencing than

traditional coarse-grained topic models. In order to validate this claim, we will compare our

fine-grained models with topics from a traditional Latent Dirichlet Allocation mode with 100

topics. We refer to this baseline model as coarse.

As discussed in previous chapters, traditional probabilistic topic models such as Latent

Dirichlet Allocation are not able to utilize large numbers of topics. However, as demonstrated

in Chapter 5, anchor-based topic models can be successfully trained with thousands of

topics. Consequently, for our fine-grained models, we will employ the anchor word algorithm.

Anchor-based topic models view topic modeling as non-negative matrix factorization. This

class of topic models attempts to decompose a document-word matrix into two matrices,

including a topic-word matrix which gives the conditional probabilities of a particular word

given a topic. Ordinarily, this factorization is NP-Hard. However, given a set of anchor-words,

or words which uniquely identify a topic, the computation requires only O(KV 2 + K2V I)

where K is the number of topics, V is the size of the vocabulary, and I is the average number

of iterations (typically around 100).

We train our anchor-based model using 3,000 topics. We choose this number based on

the number of documents we expect each topic to explain: there are roughly 30,000 verses

and, according to openbible.info, a median of 10 cross-references per verse, so we want

each topic to be roughly responsible for 10 verses.

By default, the anchors for the 3,000 topics are produced using a modified form

of the Gram-Schmidt process [6]. This process essentially views each word as a vector in

high-dimensional space, and attemts to pick anchor words which maximally span that space.

For more details, see Arora et al. [6]. In our results and figures, we refer to this model with

the default anchor selection method as Gram-Schmidt.
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This does present us with some difficulty with anchor words as this process tends

to select the most extreme and esoteric anchors possible [60], which can lead to less useful

topics as we increase the number of topics. However, in Chapter 2 we introduce a method

of using multiple words to form a single anchor. This method, called tandem anchoring,

was originally formulated as a way to extend the anchor algorithm to allow for interactive

topic modeling [66]. However, in the case of fine-grained topic modeling, the algorithm is not

scalable enough to allow interaction with such a large number of topics.5

Instead of utilizing human interaction to seed the topic anchors, we will seed the

tandem anchors using the terms from randomly selected verses. For example, suppose we

had randomly selected Isaiah 25:8 as a verse from which to form an anchor. As shown in

Figure 6.1, this verse includes terms such as ‘swallow’, ‘death’, and ‘tear’. Each of these

terms is represented as a point in high-dimensional space. To produce a new point which

represents our anchor, we simply average6 the words forming the anchor. We repeat this

process 3,000 times to produce an anchor-based topic model with tandem anchors. While

this exact methodology of seeding topic anchors using randomly selected verses is novel, we

note the similarity to the method used to seed topics in Rephil, a web scale topic model

based used by Google [81]. In figures, we refer to this model with tandem anchors as tandem.

For each of these models, we must take the topic-word distributions from the topic

model and produce document specific topic assignments. Drawing from the main result of

Chapter 5, we utilize mean field variational inference in order to assign the individual verses

to topics. As with our previous experiments with topic-based classification, our preliminary

experiments with cross-referencing indicate that variational is nearly as good as iterated

conditional modes with respect to topic consistency, and it performs slightly better with

respect to cross-reference generation.

5With a typical number of topics, say 50, it takes less than 3 seconds to update on an amd Phemon II X6
1090T processor. In contrast, with 3,000 topics, topic recovery takes approximately 2 hours and 20 minutes.
This can be improved to a few minutes with proper parallelization (see Chapter 7), but even this is not fast
enough for an interactive system.

6Specifically, we use the element-wise harmonic mean to average the words. See Chapter 2 for more details.
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Figure 6.2: Cross-reference ROC curves for different metrics for cross-reference selection with
topics from three different topic models and TSKE as the cross-reference ground-truth.

6.3 Results

In this section we present the results of our experiments with topic-based cross-referencing.

As discussed in Section 6.2, we experiment with three different cross-reference datasets:

TSKE, OpenBible+0, and OpenBible+5. We utilize three different topic models: coarse,

Gram-Schmidt, and tandem, with the latter two being fine-grained topic models. We seek to

demonstrate that our topic-based cross-referencing system can effectively utilize fine-grained

topic modeling to produce candidate cross-references which can be annotated by humans in

a cost-effective manner.

6.3.1 Metric Comparisons

We first explore the various metrics for selecting cross-references discussed in Section 6.2.3.

With each proposed distance metric, we are able to set a threshold and determine which

Bible verse pairs to keep as candidate cross-references and which to discard. Figure 6.2 and

Figure 6.3 summarize our results with respect to metrics.

Figure 6.2 gives a receiver operator characteristic (or ROC) curve, which compares the

true positive rate (or recall) against the false positive rate (or fall-out). We show the curve

for the various metrics using the Treasury of Scripture Knowledge, Enhanced (or TSKE) as
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Figure 6.3: Cross-reference PRC plots with different metrics for cross-reference selection with
topics from three different topic models and TSKE as the cross-reference ground-truth.

our ground truth. We show these curves on each of the three different models discussed in

Section 6.2.4.

Overall, cosine distance is the best method for selecting cross-references, as it gives

the largest area under the ROC curve. The major exception to this is with the traditional

coarse-grained topic model for which Euclidean distance performs the best once the false

positive rate is above 0.1. Considering that cosine distance has frequently been used in

conjunction with topics from LDA [27, 108], this result is somewhat surprising.

Also of interest is the fact that the word-match baseline does reasonably well with

respect to the true positive rate, at least if a false positive rate of roughly .196 is acceptable.

Note that this corresponds to 188,974,806 false positives in the TSKE dataset, so while the

435,159 of true positives may be impressive, this baseline is not likely to be useful in practice,

since it would require manual evaluation of such a large number of predicted positives. Indeed,

due to the cost of manual evaluation, we are most interested in the part of the ROC curve

which corresponds to a relatively small number of predicted positives.

While the receiver operator characteristic plot is undoubtedly more popular than the

precision-recall plot, in cases where the data is imbalanced, the precision-recall plot can be

much more informative. This is mainly because of the use of false-negatives in the ROC curve,

which can present an overly optimistic picture of the classifier performance [97]. Consequently,
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in Figure 6.3, we also compare each of the proposed metrics using a precision-recall curve (or

PRC).

The PRC plot reinforces the claim that cosine distance is the best distance metric to

threshold cross-references since for any reasonable level of precision, cosine distance yields

the best results, although for low recall rates, cityblock distance is competitive with cosine

distance. The PRC plot is also a good illustration of why the matching baselines are not

practically useful—they do have decent true positive rates, but the precision with these

baselines is extremely low.

6.3.2 Topic Model Comparison

We now explore the various topic models discussed in Section 6.2.4. Figure 6.4 and Figure 6.5

summarize these results. Based on Section 6.3.1, each reported result in this section uses

cosine distance to determine verse pairs which should be considered as candidate cross-

references. We compare the results of the three topic models on the three datasets discussed

in Section 6.2.1.

As shown in Figure 6.4, the overall trend on each of the three datasets is that the true

positive rate increases as we use more selective datasets, likely because the more selective

datasets like OpenBible+5 include fewer cross-references which are non-obvious or esoteric.

However, as seen in Figure 6.5, on more selective datasets, we also see a drop in precision.

Considering that OpenBible+5 is a subset of OpenBible+0, and that OpenBible+0 is nearly

a subset of TSKE7, this result is not surprising. In the final cost analysis (see Section 6.3.3),

the selectivity of the actual annotators must be taken into account when attempting to

predict the true positive rate or the precision of a system.

As shown in Figure 6.4, regardless of the anchor selection strategy, both fine-grained

topic models outperform the traditional coarse-grained model, regardless of which dataset is

used. Our model using tandem anchors built from randomly selected verses performs the

7OpenBible+0 has 533 references which are not included in TSKE seed from other public domain sources.
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Figure 6.4: Cross-reference ROC curves with different models for cross-reference selection
with three different datasets.
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Figure 6.5: Cross-reference PRC plots with different models for cross-reference selection with
three different datasets.

best for nearly all levels of false positive rate. However, the Gram-Schmidt based anchors

produce slightly better true positive rates for very low false positive rates.

This trend is better illustrated with the PRC plots in Figure 6.5. While for higher

values of recall the tandem anchor selection strategy does win out, it is only after precision

significantly drops that tandem anchors produces superior predictions to Gram-Schmidt

anchors.
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6.3.3 Cost Analysis

While the precision-recall curves in Figure 6.5 may suggest that Gram-Schmidt based topic

models produce superior topics for cross-referencing, we suggest that this analysis may be

missing a key point in the real world analysis. As an alternative to both PRC and ROC

curves, we suggest that this task might be best served with an analysis of cost per true

positive.

We envision that our system would be used to produce a set of candidate cross-

references which would then be curated using human annotators. These annotators would

be tasked with evaluating each potential reference and determining whether or not each

cross-reference is valid. Critically, the annotator would only be required to evaluate individual

cross-references, not the entire text.

As a working example of the cost of such an annotation process, suppose we use a

popular crowd-sourcing service (e.g., Amazon Mechanical Turk) to produce human annotations.

We might reasonably expect to pay something around $0.01 USD per annotation. We would

likely require some form of quality control in the form of redundant annotations, so we might

end up paying $0.05 USD per annotated cross-reference candidate. Of course, the exact

cost per annotated cross-reference will vary depending on the service and difficulty of the

specific text being cross-referenced. However, we will use these estimates for the purpose of

illustration.

Suppose as part of this working example, we are interested in producing a resource with

12,000 valid cross-reference annotations (matching the size of the previously mentioned LDS

edition of the Bible [2]). Consulting Figure 6.6 we can then determine how many candidate

cross-references we would need to produce for human annotation in order to create the final

curated cross-reference resource. For example, using TSKE as our ground truth, we would

need approximately 150,000 predicted positives in order to find 12,000 true positives. At

$0.05 USD per annotation, this would cost about $7,500 USD. Supposing that our annotators

were more selective, we could use the OpenBible+0 as the ground truth, which would roughly
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Figure 6.6: Cross-reference cost curves with different models for cross-reference selection
with three different datasets. Note the log-log scale. The x-axis denotes the number of
cross-references produced by our method, while the y-axis indicates how many of those
cross-references are valid according to the human-provided ground truth.

double the cost. With OpenBible+5, which is considerably more selective, this cost rises to

approximately $1,000,000 USD. In contrast, with traditional coarse-grained topic modeling,

this cost is anywhere between $40,000 USD using TSKE as the ground truth, to $17,500,000

USD using OpenBible+5 as the ground truth.

While these costs may seem prohibitive, consider that the alternative is to have experts

understand the entire text to the degree that they can read one passage and recall other

relevant passages they have previously read. In the case of religious texts, this is often

possible since adherents study those texts as part of their daily routine. For example, in the

case of the LDS edition, it took a committee of experts seven years of work to produce their

cross-reference resource, even with the aid of hundreds of volunteers. However, without those

experts and volunteers, the cost would have been even greater. In the naive case where every

possible reference is manually checked, the cost skyrockets to around $48,000,000 USD.

We also note that while Figure 6.6 shows that while Gram-Schmidt anchors does

eventually win out against tandem anchors, for smaller numbers of predicted positives (less

than 104), tandem anchors produces more true-positives. Depending on the needs of the

user and the available annotation resources, this may be sufficient. Thus, for some smaller

cross-referencing efforts, tandem anchors does provide some benefit.
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evict wipe life death
reproach book dread shame
seek face find turn heart none found
said say lord servant heard brought behold israel
ransom sheol pit draw soul life death
pass away behold earth come wind midst day made king
shall people god bring day give land

Table 6.1: Topics which were attributed to tokens in Isaiah 25:8. See Figure 6.1 for the text
of this verse and the most relevant cross-references for this verse. As per usual, each topic is
represented as a set of related words, however rather than showing the top n most probable
words in each topic, we show the words which had probability greater than 1e − 4 in the
topic-word distribution, leading to unequal numbers of words shown for each topic.

6.3.4 Qualitative Example

Reusing the example of Isaiah 25:8 discussed in Section 6.2.1 and shown in Figure 6.1, we now

examine the topics and cross references of a single verse to help us understand qualitatively

how fine-grained topic modeling can help us to produce a cross-reference resource. While this

example is not randomly selected, it was selected arbitrarily from a selection of well-known

Bible cross-references for illustrative purposes. For this qualitative example, we use the

cross-reference results gleaned from using tandem anchors, and cosine distance to predict

the most topically similar verses. We focus on this single illustrative example, but note that

other examples of verse pairs can be see in Appendix B.

Figure 6.1 shows the topics which were attributed to tokens of Isaiah 25:8. Unsurpris-

ingly, we that see many of the important terms unique to this verse appear as the probable

words in this topic. More importantly, we see that the topics reflect important cooccur-

rence patterns found across both this verse and some of the verses which are considered

cross-references for Isaiah 25:8. For example, we have a topic which includes terms such as

‘ransom’, ‘Sheol’, and ‘death’, which are also terms which appear in the linked verse Hosea

13:14. Because of this shared topic between Isaiah 25:8 and Hosea 13:14, this cross-reference

is ranked fairly highly, and would have been discovered after annotating about five hundred

thousand predicted cross-references.
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Pride and Prejudice, Ch. 8 Emma, Ch. 4
“I have an excessive regard for
Miss Jane Bennet, she is really a
very sweet girl, and I wish with
all my heart she were well set-
tled. But with such a father
and mother, and such low con-
nections, I am afraid there is no
chance of it.”

“I wish you may not get into a scrape, Harriet,
whenever he does marry;–I mean, as to being ac-
quainted with his wife–for though his sisters, from
a superior education, are not to be altogether ob-
jected to, it does not follow that he might marry
any body at all fit for you to notice. The misfortune
of your birth ought to make you particularly careful
as to your associates. There can be no doubt of
your being a gentleman’s daughter, and you must
support your claim to that station by every thing
within your own power, or there will be plenty of
people who would take pleasure in degrading you.”

Table 6.2: Two related passages identified by our cross-referencing system from the works of
Jane Austen. Passage 1 is taken from the eighth chapter of Pride and Prejudice, and Passage
2 is taken from the fourth chapter of Emma. These two passages are a valid cross-reference
because they both discuss social standing and family connections in the context of marriage.
The connection was found even with their lack of shared words.

An important term which is missing from the topic-word distributions for Isaiah 25:8

is ‘swallow’. As a consequence of this omission, the link between Isaiah 25:8 and 1 Corinthians

15:54, a significant cross-reference shown in Figure 6.1, is actually ranked fairly low, and

would have been found only after evaluating more than 1.6 billion predicted cross-references.

While these two verses did share one topic in common, most of the text of Isaiah 25:8 was

attributed to topics not used with 1 Corinthians 15:54. This rare term (which as it turns out

is rare enough that it has low probability in every topic), should have been the link between

these two verses.

We suggest that future work might improve upon our work by boosting the importance

of rare words, perhaps using something as simple as TF-IDF weights instead of raw word

counts to compute word cooccurrences. Another possible avenue for improvement could

involve intentionally selecting verses from which to form tandem anchors based on the presence

of significant but rare terms.
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6.4 Discussion

Without extensive cross-referencing resources for more secular datasets, it is difficult to

empirically prove the usefulness of our system generally without an extremely costly user

study. That said, we make a small attempt by examining cross-references generated from

the complete works of Jane Austen. Based on our cost analysis in Section 6.3.3, and since

we will be examining only a small number of cross-references, we utilize tandem anchors to

generate topics.

We examine the first 300 cross-references produced by our system. Of these, we find

that 39 of them are valid, linking passages from all six works by Jane Austen. As with our

experiments with the Bible, this level of precision is sufficient that we believe that we could

dramatically lower the cost of producing a full cross-referencing resource for this text.

In the first 300 cross-references, we note that 109 of these are cross-references linking a

paragraph in the eighth chapter of Pride and Prejudice to other passages in our corpus. Of the

references involving this one paragraph, 22 were valid. An example of such a cross-reference

is shown in Table 6.2. While marriage in general is a common theme in the works of Jane

Austen, this particular paragraph more specifically discusses the role of social status and

family connection as it relates to choosing a marriage partner. We note that the connection

between the passages in Table 6.2 is thematic; they share no significant words in common,

demonstrating the capability of the system to detect nuanced topics and themes.

6.5 Conclusion

We have produced a system using fine-grained topic modeling which is able to propose

candidate cross-references which can be verified by non-expert human annotators for the

purpose of creating a cross-reference resource at a fraction of the cost of current manual

techniques. Our method, which utilizes tandem anchors to produce large numbers of highly
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nuanced topics coupled with an effective assignment strategy, is able to produce document-

topic vectors which are comparable using cosine distance.

Our results also demonstrate that this system would not be as cost effective with tra-

ditional coarse-grained topic modeling. While we can find sets of topically related documents

using coarse-grained topics, for the task of finding the most closely related documents we

require a system which is more specific. We suggest that this success serves as motivation

for exploration of fine-grained topic modeling for other topic-based use cases which require

nuance and precision.
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Part IV

Parallelization

In this final part of the dissertation, we show that proper utilization of parallel

hardware can significantly speedup anchor-based topic modeling. Of course, given sufficient

time, this is not strictly necessary for obtaining our results, as all of our algorithms can

be run in serial. However, as we increased the number of topics in our model, we found

that the increased runtime of topic recovery did hamper our exploratory experimentation.

Through parallelization of our algorithms, we were able to significantly reduce turn-around

time between, reducing friction between invention and realization of our ideas. Our efforts

in this space focused on Mrs, a lightweight MapReduce framework designed specifically for

scientific computing. In Chapter 7, we briefly describe the MapReduce programs we employ

during our experiments with the anchor words algorithm. In Chapter 8, we describe four

modifications to the original MapReduce algorithm which make Mrs especially well-suited

scientific computing.
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Chapter 7

Parallelization of Anchor Algorithm

7.1 Introduction

Anchor-based topic models are a fast and scalable alternative to traditional probabilistic topic

modeling. With the anchor algorithm, topic recovery takes O(V 2K +K2V T ), where K is the

number of topics, V is the size of the vocabulary, and T is the average number of iterations

required for the inference procedure to converge [6]. In contrast, traditional probabilistic

algorithms such as Latent Dirichlet Allocation typically require O(MDKT ) to run, where M

is the number of documents and D is the expectation of the length of the documents [42].

This can be improved using online variational Bayes updates so that we require only a single

pass through the data [47], but nevertheless, topic inference with LDA is expensive compared

to the anchor words algorithm. Since K is typically small (< 100), and V typically grows

logarithmically with respect to the size of the data [46], the anchor words algorithm scales to

much larger datasets and is fast enough to facilitate interactive topic modeling [66].

Topic recovery with the anchor algorithm requires solving V quadratic programs of

size K ×K, and each of those programs takes T iterations on average. Consequently, when

K is large, as is the case in our experiments with fine-grained topic modeling, the runtime of

the anchor words algorithm can become expensive.

In addition, topic recovery depends on a V × V cooccurrence matrix Q. We typically

assume that this matrix is precomputed and fixed. However, computing Q takes O(MD2).

For large datasets with millions of documents, this runtime can be considerable, even if topic

recovery is fast once Q is constructed.
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Happily, both topic recovery and the construction of the cooccurrence matrix Q are

amenable to parallelization. In this chapter, we briefly describe our efforts in this space, and

show that significant speedup is achievable for these algorithms.

7.2 Parallelization with Mrs

In our efforts to parallelize parts of the anchor algorithm, we utilize Mrs MapReduce, a

lightweight Python-based MapReduce framework designed specifically for scientific computing.

While the Mrs project is available online1, we refer the reader to Dean and Ghemawat [30]

for a high-level overview of the structure of MapReduce programs, and McNabb et al. [72]

for an overview of the Mrs framework. Furthermore, we point to Chapter 8 for a description

of our modifications to the MapReduce framework which make Mrs particularly well suited

for scientific computing compared to other MapReduce implementations. In this chapter, we

will only describe our algorithms at a high level, but we note that our code is available online

for those interested in specific implementation details2.

7.2.1 Q-construction

Following Arora et al. [6], the construction of the V × V cooccurrence matrix Q is computed

as follows:

Q = H̃H̃T − Ĥ (7.1)

where H̃ is a V ×M sparse column normalized matrix encoding document-word counts,

and Ĥ is a V × V diagonal matrix which corrects for words which cooccur with themselves.

Assuming properly vectorized code, Q construction is fast and efficient.

However, for large datasets with millions of documents, H̃ may not fit in RAM, even

with proper sparse representation. Leaving the details of the derivation to Liu et al. [62], as

an alternative we can compute the contribution of each individual document towards the

1https://github.com/byu-aml-lab/mrs-mapreduce
2https://github.com/jefflund/ankura
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Listing 7.1 MapReduce program for computing cooccurrence matrices in parallel.

def map( key , batch ) :
Q part = matrix (V, V)

for document in batch :
# f o l l o w i n g Equation 7.2 , compute
# c o n t r i b u t i o n o f each document in the batch
Q part += co nt r i b u t i on ( document )

# y i e l d p a r t i a l Q, wi th empty s i n c e on ly one reduce t a s k
y i e l d ’ ’ , Q part

def reduce ( key , va lue s ) :
# sum the p a r t i a l Q’ s
Q = sum( va lue s )
# t o p i c recovery uses row normal ized Q
y i e l d row normal ized (Q)

final Q matrix. Given that wd,i is the ith word of document d, ei is the ith basis vector in

V -dimensional space, and nd is the number of tokens in document d, then the contribution of

each individual document is:

1

Mnd(nd − 1)

∑
i 6=j,i,j∈[nd]

ewd,i
ewd,j

. (7.2)

Using Equation 7.2, we can compute Q simply by summing the contribution of each individual

document. Critically, this process can be done with just a single document in RAM at a

time, meaning that while this computation is not as efficient, it scales to arbitrarily large

datasets (assuming that the V × V matrix Q fits in RAM).

We note that this formulation is also trivially parallelized using MapReduce as shown

in Listing 7.1. Note that each map task is actually responsible for multiple documents. The

batch size for each map task is crucial for good performance. If the batch size is too small,

the increased communication costs between the map tasks and the single reduce task will
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Figure 7.1: Speedup ratio and parallel efficiency for construction of cooccurrence matrix
using Mrs MapReduce using one million Amazon reviews as the text.

hurt parallel efficiency. On the other hand, if the batch size is too large, then we cannot take

as much advantage of the available parallel hardware.

We demonstrate the usefulness of this parallelization by constructing the cooccurrence

matrix using the text of one million Amazon reviews3. We reduce the runtime of this

computation from approximately 60 minutes to less than 10 minutes. However, as shown in

Figure 7.1, parallel efficiency does drop significantly as we increase the number of workers.

This is likely because in our experiments, the data is stored on a shared file system, and as

we increase the number of workers, the increase in communication overhead lowers parallel

efficiency.

3The reviews are sampled from the full set of reviews available at
http://jmcauley.ucsd.edu/data/amazon.
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7.2.2 Topic Recovery

With anchor-based topic recovery, each of the V words is represented as a row in Q̄, which is

a row normalized version of Q encoding conditional probabilities of observing one word given

another. The V quadratic programs seek to represent each word as a convex combination

of K anchors, which are also points in the same V -dimensional cooccurrence space. We

represent these coefficients as a V × K matrix C. Under the anchor assumption, which

states that each anchor uniquely identifies a topic, the coefficients in C are the conditional

probability of a topic given a word. This is the inverse conditioning we desire, so we multiply

this coefficient matrix by a vector giving the empirical probabilities of each word, which

according to Bayes’ rule yields the probability of a word given a topic.

Given a fixed Q, and a fixed set of anchors A, each of these quadratic programs is

entirely independent of the others. Consequently, we can easily write a MapReduce program

which performs topic recovery, as seen in Listing 7.2. Once again, some care must be taken

with the size of the batches sent to each map task, since too few words per batch increases

communication costs, while too many words per batch reduces parallel utilization.

We note that each map task output is sparse, and we can glean some savings in

communication costs if we use an appropriate sparse matrix representation. We recommend

that a sparse row format be used, since matrix addition is efficient in the computational

bottleneck of the reduce task.

As seen in Figure 7.2, with our experiments in Chapter 6 with fine-grained topic

modeling on the English Standard Version of the Bible, we are able to effectively leverage our

moderate parallel resources. Using 20 workers, each using 8 cores of an Intel Core i7-4770K,

we are able to bring the time required for topic recovery down to a median of 10 minutes.

With a single worker, topic recovery takes a median of 128 minutes.

We note however, that these speedup numbers are only applicable for fine-grained

topics. Recall that topic recovery in serial requires O(V 2K +K2V I), where I is the average

number of iterations for gradient descent to converge when solving for rows of C. Because
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Listing 7.2 MapReduce program for parallel topic recovery.

def map( key , batch ) :
# Q and anchors are f i x e d , and are presumably a c c e s s i b l e
# on a shared f i l e s y s t e m .
Q = get Q ( )
anchors = get anchor s ( )

C part := matrix (V, K)
for word in batch :

# Solve a q u a d r a t i c program f o r each word in the batch ,
# r e p r e s e n t i n g each word as a combination o f the anchors .
C part [ word ] = recove r (Q[ word ] , anchors )

y i e l d ’ ’ , C part

def reduce ( key , va lue s ) :
# Compute emper ica l d i s t r i b u t i o n over words
Q = get Q ( )
p r i o r = diag (Q.sum( a x i s =1))

# Sum the p a r t i a l C ’ s
C = sum( va lue s )

# Use Bayes ’ s r u l e to complete t o p i c recovery
y i e l d dot ( pr io r , C)
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Figure 7.2: Speedup ratio and parallel efficiency for fine-grained topic recovery using Mrs
MapReduce. We use 3,000 topics with Gram-Schmidt anchors on the English Standard
Version of the Bible. See Chapter 6 for more details on the dataset and topics.

runtime scales quadratically with the number of topics K, there is more computational benefit

from parallelization when K is large. In fact, when K = 100, we find that communication

overhead becomes actually increases runtime using any more than 4 workers. Admittedly

though, when K is small, runtime is already fast enough to be interactive [66], so parallelization

is not actually needed in practice.

7.3 Conclusion

While the anchor words algorithm is certainly scalable enough to be used with a single

processor, we have demonstrated that parallelization can significantly speed up the anchor

words algorithm. The speedup for constructing cooccurrence matrices is significant on large

datasets with millions of documents, although we note that this is a one-time computation

which can be precomputed. However, the performance gains with topic recovery are significant
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from the standpoint of a researcher. The ability to quickly iterate through new ideas proved

invaluable during the completion of this dissertation.
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Chapter 8

Mrs: High Performance MapReduce for Iterative and Asynchronous Algorithms 

in Python

Published in Workshop on Python for High-Performance and Scientific Computing 2016 [64]

Abstract

Mrs [70] is a lightweight Python-based MapReduce implementation designed to make MapRe-

duce programs easy to write and quick to run, particularly useful for research and academia.

A common set of algorithms that would benefit from Mrs are iterative algorithms, like those

frequently found in machine learning; however, iterative algorithms typically perform poorly

in the MapReduce framework, meaning potentially poor performance in Mrs as well.

Therefore, we propose four modifications to the original Mrs with the intent to improve

its ability to perform iterative algorithms. First, we used direct task-to-task communication

for most iterations and only occasionally write to a distributed file system to preserve fault

tolerance. Second, we combine the reduce and map tasks which span successive iterations to

eliminate unnecessary communication and scheduling latency. Third, we propose a generator-

callback programming model to allow for greater flexibility in the scheduling of tasks. Finally,

some iterative algorithms are naturally expressed in terms of asynchronous message passing,

so we propose a fully asynchronous variant of MapReduce.

We then demonstrate Mrs’ enhanced performance in the context of two iterative

applications: particle swarm optimization (PSO), and expectation maximization (EM).
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8.1 Introduction

Mrs [70] is a previously published framework for MapReduce projects implemented in Python.

It was shown to be easily accessible, easy to use, and readily available for a variety of

environments, scheduling systems, and file systems. This ease of use and availability made

it well suited for academic or research environments where it is common for users to have

generic, private clusters available rather than dedicated MapReduce clusters. Regarding

its performance, Mrs was shown to perform just as well or better than Hadoop for various

problems, meaning the user need not sacrifice quality for simplicity.

However, iterative algorithms still suffered a significant performance penalty. Much of

this penalty comes from overhead, such as communication time between nodes, writing to

reliable storage, and delay between iterations. For algorithms with a single iteration, or those

with very few iterations, this overhead is acceptable, but for larger iterative algorithms, it

becomes excessive. For example, given a large data set, a one second overhead per iteration

may be insignificant for an algorithm requiring only one iteration, but one second per iteration

for thousands of iterations on the same set could increase the execution time of a CPU-bound

algorithm by hours.

We propose a set of modifications to the original Mrs framework in order to improve its

performance on iterative algorithms. The first is to use direct communication between nodes

for most iterations, and only occasionally write to reliable memory (Section 8.3.1). Second,

we propose that reduce tasks be agglomerated with the subsequent map tasks with the same

key, which reduces communication and halves the number of tasks that must be assigned

each iteration (Section 8.3.2). Third, we present a generator-callback model for submitting

operations for concurrent and asynchronous evaluation (Section 8.3.3). This model makes it

easy for iterative algorithms to submit intermittent operations, such as convergence checks, to

be evaluated concurrently without requiring significant bookkeeping. Finally, we introduce an

asynchronous extension of the MapReduce programming model in Section 8.4 which efficiently

supports algorithms such as Particle Swarm Optimization (PSO) [71] where iteration can
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proceed at a different rate for each key. This model allows the same straightforward map and

reduce functions to work in both synchronous and asynchronous operation.

While we consider the generator-callback function novel to our design, the rest of these

modifications have already seen success in other publications. We discuss these in Section 8.2.

Finally, we demonstrate the application of these techniques in Mrs [70]. Section 8.5

evaluates the performance of Mrs with and without these features, using PSO [71] and

expectation maximization (EM) [25] as examples, and shows significant improvements in

performance. Compared to standard MapReduce, using a reduce-map operation improved

PSO performance by 31%. For EM, iterations without checkpointing to redundant storage

show a 91% improvement, making parallelization feasible, and the reduce-map operation gives

an extra 11%. Asynchronous MapReduce improves performance of PSO by an additional

24% in the presence of moderate variability in task execution times for a total gain of 53%.

Furthermore, it performs iterations faster than synchronous PSO even when task execution

times are uniform. With 768 processors and uniform tasks, Asynchronous MapReduce

increases the throughput by 47%.

8.2 Related Work

MapReduce [30] is a popular framework for performing parallel processes, with Hadoop being

its most well known and widely used open source implementation. Due to its limitations on

iterative algorithms, however, several attempts have been made to modify MapReduce, or

come up with a novel parallel processing framework, for the purpose of accommodating them.

Most improvements or modifications consist of either modifying the the programming model,

reducing communication, or optimizing the task scheduler.

MapReduce is technically defined as a map phase followed by a reduce phase, and

this model must be extended, at least trivially, to support iterative programs. In most

MapReduce systems, a “user program” or “driver” submits a job consisting of a map phase

and a reduce phase, waits for it to complete, reads the results, and then repeats. Several
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MapReduce-like systems allow the user to specify an arbitrary directed acyclic graph of

data dependencies [21, 53, 82, 120]. Frameworks like Maiter [123] and GraphLab [63] have

implemented novel models specifically directed at iterative parallel processing. Maiter uses a

directed acyclic graph to represent data and dependencies, but instead of updating the data

at each iteration, it only keeps track of the changes in the data from iteration to iteration.

This method of iterating makes asynchronous task scheduling simple and eliminates wasteful

processing. GraphLab represents a given problem with its own type of directed graph along

with a shared data table to represent information common to multiple tasks.

Reducing communication has been a common modification to MapReduce because

of the amount of excess overhead that is generated with iterative algorithms. One strategy

for this is to store data locally. Conch [124] and Twister [36] do this. Conch stores all data

in local cache and uses a memory manager to optimize total memory use. It only writes

to an HDFS when memory overflows or when the algorithm terminates. Twister pushes

intermediate data directly from map tasks to reduce tasks and stores data on the master

between reduce and map tasks. Many other frameworks take advantage of this concept in

some way [20, 79, 101]. Both Conch and Twister also combine certain tasks, sending data

directly from one task to another instead of having each task read from memory, compute,

and then write back to memory like in normal MapReduce.

Intelligent task scheduling can also help improve performance. Several frameworks

have developed optimized task schedulers that take advantage of specific modifications in their

framework or plan ahead to reduce waiting and communication [20, 79, 94, 124]. Another

technique implemented in iMapReduce [121, 122] aims to eliminate most of the overhead by

making all tasks persistent. It seems, however, that the ideal scheduling would be a form of

asynchronous scheduling. iHadoop’s [37] primary modification to Hadoop was the addition

of asynchronous scheduling, but several frameworks have since implemented some sort of

asynchronicity into their designs [101, 121–123].
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We build on these concepts and apply our modifications to Mrs, resulting in a

convenient, high-performance Python implementation of an iterative MapReduce framework.

Each of the previously mentioned concepts is implemented in Mrs using methods described

Sections 8.3 and 8.4, as well as the generator-callback model to handle task scheduling and

completion.

8.3 Synchronous MapReduce

Iterative programs are sensitive to overhead such as communication costs because such

overhead accumulates from iteration to iteration. We propose three improvements to reduce

overhead. Section 8.3.1 shows a principled approach for limiting the frequency of checkpoints

to distributed storage. Section 8.3.2 describes a reduce-map operation for agglomerating

reduce and map tasks. Section 8.3.3 defines a generator-callback model for defining a directed

acyclic graph of operations in an iterative program. These three improvements are evaluated

later in the paper in Section 8.5.

8.3.1 Infrequent Checkpointing to Distributed Filesystems

Traditional MapReduce implementations communicate all intermediate data through a

distributed filesystem. Such filesystems replicate all data to ensure fault tolerance but come

with a significant performance penalty. Communication and storage in MapReduce should

explicitly address the tradeoff of speed vs. capacity and fault tolerance. An ideal runtime

would be able to automatically move data between levels of the memory hierarchy, a well-

known strategy for storage devices [? ]. While an advanced automatic memory hierarchy

may be impractically complex for a MapReduce system, communicating data from some

iterations directly between nodes and storing data from other iterations to reliable storage is

a simple way to balance speed and fault tolerance.

We advocate storing the output of most map and reduce tasks on the local filesystem,

while storing the output from occasional checkpoint iterations to reliable storage. The
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operating system buffers data on the filesystem in RAM and automatically migrates it to

disk if necessary. With fast iterations, short-lived intermediate data is usually deleted before

ever being written to disk. This approach provides the speed of RAM when possible and

gracefully sacrifices speed for capacity when the size of data is great. In the event that a

node fails and makes its local storage unavailable, a MapReduce runtime can roll back to the

most recent checkpoint iteration.

In almost any realistic iterative program, checkpointing should occur far less than every

iteration, unlike most MapReduce systems, including Hadoop. Some other implementations,

like Twister [36], go to the other extreme and do not support distributed storage, sacrificing

fault tolerance. The ideal checkpointing frequency depends on the expected cost of failures vs.

the cost of redundancy. We estimate and compare these costs using a simple model. While

specific circumstances may warrant a customized model to determine the ideal checkpoint

frequency, this simple model gives a rule of thumb and demonstrates the cost of checkpointing

every iteration.

In this simple model, failures are assumed to be independent. We also assume that

the times required to compute an iteration, perform a checkpoint, or initiate a recovery are

constant. Let n be the number of iterations between checkpoints, t the time to perform each

iteration, c the extra time required for a checkpointed iteration, and r the time to initiate

recovery after a failure. Let X be a Bernoulli-distributed random variable indicating whether

a failure occurs during an iteration, with probability determined by the product of the mean

time between failures in a cluster f and the total time per iteration (including the amortized

cost of checkpointing):

X ∼ Bernoulli

(
1

f

(
t+

c

n

))
Let Y ∼Uniform(n) be a random variable indicating the number of iterations since the last

checkpoint, which is independent of X. Then the expected value of the number of seconds of
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extra work in an iteration is:

E [X (r + Y t)] =
1

f

(
t+

c

n

)(
r +

n

2
t
)

If this is less than the amortized cost of checkpointing per iteration ( c
n
), then redundancy

costs more than it helps. The breakeven point is given by solving for n:

n = max

[
1,

1

t

(√( c
2

+ r
)2
− 2c(r − f)−

( c
2

+ r
))]

Most reasonable values cause n to be larger than 1. For example, suppose that writing

to reliable storage adds 10 seconds per iteration (c = 10) and that initiating recovery from a

checkpoint requires 60 seconds (r = 60). Note that the values for c and r are conservative, and

increasing c or decreasing r would increase n. For a program with moderately slow one-minute

iterations (t = 60) and frequent failures on average once every three hours (f = 10800), the

breakeven point n is 6.7. For a program with fast iterations (t = 1) and a moderate failure

rate of one failure in a cluster per week (f = 604800), the breakeven point n rises to 3413.

The actual ideal frequency of checkpointing depends on individual circumstances, and many

short-running programs may not require checkpointing at all.

8.3.2 Reduce-map Operation

Iterative MapReduce programs consist of a string of iterations, each with a map operation

and a reduce operation. The new task dependencies between iterations motivate rethinking

the decomposition of work into tasks. The output from each reduce task is the sole input to

a single map task in the next iteration. Some systems take advantage of this relationship

between tasks by scheduling them to the same processor or starting a map task before all

preceding reduce tasks are complete [37, 121]. We instead agglomerate each reduce task with

the map task that uses its output, which removes this communication and halves the number

of tasks that the master must assign each iteration. Figure 8.1 shows the dependencies between
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Figure 8.1: Task dependencies of a typical iterative MapReduce program with (a) stan-
dard map (M) and reduce (R) operations, contrasted with (b) combined reduce-map (RM)
operations.

tasks with separate reduce and map tasks (Figure 8.1a) and with combined reduce-map tasks

(Figure 8.1b).

In principle, the master might be able to autodetect these fine-grained data dependen-

cies, but we allow the user to either specify a reduce-map dataset or separate reduce and

map datasets. The user still provides a map function and a reduce function, but specifying a

reduce-map operation allows the runtime to combine tasks and eliminate communication.

Figure 8.2 demonstrates the difference between MapReduce using separate reduce

and map operations and MapReduce using combined reduce-map operations. Combining the

reduce and map eliminates the time spent in assigning each reduce task and waiting for it to

complete.
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(a) standard reduce and map operations

3 3 3 3 3 3 3 3

1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4

2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0

Proc. 0

Proc. 1

Proc. 2

Proc. 3

Proc. 4

t
0 0.5 1 1.5

(b) combined reduce-map operations

Figure 8.2: Actual task execution traces generated from a sample application (particle swarm
optimization, see Section 8.5.1 for details) without and with combined reduce-map tasks.
The run with reduce-map operations avoids the overhead of an independent reduce task and
completes sooner. The horizontal axis is measured in seconds, with the left and right sides of
each box aligning with the task’s start and stop times. The number in each box is the key of
the map task.
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8.3.3 Iterative Programming Model

The standard MapReduce model defines a single map phase followed by a single reduce

phase [30], but iterative programs execute an arbitrary number of operations and often need

to compute a loop termination condition that depends on the results. Computing convergence

checks infrequently and concurrently with subsequent iterations improves performance, but

most MapReduce implementations do not provide any mechanism to specify this behavior.

We propose an alternative model for defining operations that allows programs to specify

complex behavior without becoming inherently complicated. This model is available for

iterative programs that require such behavior but is not required for traditional single-iteration

MapReduce programs.

Varying the operations that are performed each iteration—for example, only performing

convergence checks or printing intermediate output occasionally—can significantly improve

performance. Suppose a program runs one second per iteration and that evaluating the loop

termination condition requires a tenth of a second. If this loop condition computation is

performed every iteration, it adds about 6 minutes over the course of an hour. Reducing the

check to once per minute extends execution by an average of 30 iterations but still saves

about 5 minutes total.

We represent parallel computation with a directed acyclic graph of datasets. A dataset

represents data to be produced along with the associated operations required to produce it.

In the representation of computation as a directed acyclic graph, the edges are the work,

and the vertices are the data. Such datasets are similar in spirit to resilient distributed

datasets [120]. When a user program submits datasets for asynchronous evaluation, the

runtime performs computations in any order consistent with the dependency graph. Unlike

the lazily evaluated tasks in Ciel [82], these datasets are evaluated eagerly. Because the next

iteration can begin before evaluation of the loop condition completes, both operations can

be performed concurrently. Likewise, the runtime can begin work on subsequent iterations

while a user program is collecting and printing intermediate results. Unfortunately, manually
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managing a backlog of submitted datasets is tedious and error-prone, particularly if the work

varies between iterations.

We propose a generator-callback model for submitting an arbitrary directed acyclic

graph of asynchronously evaluated datasets and for handling their completion. The generator-

callback model requires the program to provide a generator method. The generator method

serves as an iterator or coroutine that produces work to be done. It submits each dataset

for computation, along with an optional callback function to be called when computation

completes. The master keeps a backlog of pending datasets, and if the backlog gets full,

the generator blocks when it submits a dataset, later resuming when the backlog shrinks.

Implementation is especially straightforward in languages that natively support coroutines,

such as Python. As each dataset completes, the master calls the associated callback method,

which can optionally read and process the results in parallel with subsequent MapReduce

iterations. Termination is triggered either by the backlog exhausting after the generator

completes or by a callback function returning False to indicate that the loop termination

condition has been met. This model allows the MapReduce system itself to manage the

backlog of datasets rather than exposing the details to the user. Manually maintaining a

backlog requires bookkeeping that runs contrary to the simplicity of MapReduce.

Programs using the generator-callback model have greater flexibility and performance.

This model is optional but may provide significant benefits for iterative programs that use it.

Listing 8.1 is a program which submits one MapReduce step at a time. Unfortunately, the

structure of this program forces computation to wait while the master blocks on pending

operations, performs the convergence check, and outputs intermediate results. Listing 8.2

uses a generator-callback API to gain flexibility and performance. Note that in this example,

an operation is submitted in the form of a declaration of the dataset it is to produce, not

the operation itself. The generator function submits several iterations in advance, pausing

only when the submit call (or yield statement) blocks. This allows tasks to be assigned with

lower latency. The generator function also runs convergence checks with limited frequency
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Listing 8.1 The structure of a generic iterative program using a standard iterative-unaware
MapReduce API.

run batches ( ) :
# I n t i a l i z e key v a l u e p a i r s wi th empty data .
i n i t f i l e = makeTempPath ( )
for e l ement id = 1 to NUM ELEMENTS

i n i t f i l e . wr i t ePa i r ( e lement id , ”” )

# Perform mapreduce to o b t a i n i n i t i a l data .
job = new job ( )
job . s e t Input ( i n i t f i l e )
job . setMapper ( in i t map func )
job . setReducer ( i d e n t i t y r e d u c e f u n c )
data path = makeTempPath ( )
job . setOutput ( data path )
job . waitForCompletion ( )
l a s t d a t a = data path

# Perform mapreduce i t e r a t i v e l y .
for i t e r a t i o n = 1 to MAX ITERATIONS

# Run a mapreduce i t e r a t i o n and wai t f o r a d a t a s e t .
job = new job ( )
job . s e t Input ( l a s t d a t a )
job . setMapper ( map func )
job . setReducer ( r educe func )
data path = makeTempPath ( )
job . setOutput ( data path )
job . waitForCompletion ( )
l a s t d a t a = data path

# O c c a s i o n a l l y output and run convergence check .
i f i t e r a t i o n % CHECK FREQUENCY = 0

# I t e r a t i o n s t a l l s u n t i l t h i s comple tes in s e r i a l .
data = r e a d A l l F i l e s ( data path )
per form output ( data )
i f converged ( data )

break
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Listing 8.2 The structure of a generic iterative program using a generator-callback MapRe-
duce API for performance and flexibility.

genera to r ( queue ) :
# I n t i a l i z e key v a l u e p a i r s wi th empty data .
k v p a i r s = empty l i s t
for e l ement id = 1 to NUM ELEMENTS

k v p a i r s . append ( e lement id , ”” )

# Submit r e q u e s t to i n i t i a l i z e c u r r d a t a .
cur r data = MapDataset ( kv pa i r s , i n i t map func )
queue . submit ( curr data , NULL)

for i t e r a t i o n = 1 to MAX ITERATIONS
# Submit asynchronous r e q u e s t to map i t e r m d a t a .
interm data = MapDataset ( curr data , map func )
queue . submit ( interm data , NULL)

# Submit asynchronous r e q u e s t to reduce c u r r d a t a .
cur r data = ReduceDataset ( interm data ,

r educe func )

# O c c a s i o n a l l y submit output or convergence check .
i f i t e r a t i o n % CHECK FREQUENCY = 0

# I t e r a t i o n s cont inue in p a r a l l e l wi th c a l l b a c k .
queue . submit ( curr data , ou tput ca l l back )

else
queue . submit ( curr data , NULL)

output ca l l back ( data ) :
data . r e a d A l l F i l e s ( )
per form output ( data )

# Continue p r o c e s s i n g i f not converged .
return ! converged ( data )
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to reduce overhead. These convergence checks are performed concurrently with subsequent

iterations and could be submitted as datasets if they represent significant computation. The

simple generator-callback structure makes it easy to specify computation that varies from

iteration to iteration and to read data asynchronously as computation completes. Both the

blocking program and the generator-callback program use the same simple map and reduce

functions.

8.4 Asynchronous MapReduce Programming Model

Iterative MapReduce can serve as a simple message passing framework. A map task serves

to update an object, emit it, and emit messages to other objects. Between map tasks

and reduce tasks is an implicit barrier for communication to complete, and a reduce task

aggregates messages and emits the object, updated with information from the messages. With

a reduce-map operation, the second implicit barrier, between the reduce and the following

map, is removed. In the context of message passing algorithms, the MapReduce framework

conceptually manages all communication, leaving map and reduce functions focused on the

essence of the algorithm.

Not all iterative message passing algorithms require a barrier between each map

operation and the following reduce. Such algorithms take advantage of all of the messages

that have been received so far, and consideration of late-arriving messages is delayed to

the next iteration. This class of algorithms is not expressible in the standard MapReduce

programming model. Figure 8.3 illustrates task dependencies in an iterative program with

heterogeneous task execution times.

In synchronous MapReduce (Figure 8.3a), the barrier betweeen iterations leaves the

faster processors idle, but in asynchronous MapReduce (Figure 8.3b), the faster processors

evaluate more iterations. The benefit can be similar on homogeneous processors if the map

and reduce execution times vary or if there are a large number of processors.
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Figure 8.3: Task dependencies for reduce-map tasks in synchronous and asynchronous iterative
MapReduce. Asynchronous MapReduce makes much more efficient use of processors.
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We extend the MapReduce programming model to allow asynchronous message passing

algorithms. In Asynchronous MapReduce, the programmer may specify that computation of

a dataset may begin before all of the tasks in its parent have completed. Unfinished tasks

continue execution, and upon completion, their results are added to a subsequent dataset

specified by the programmer. The runtime framework keeps track of messages sent to keys

with uncompleted tasks and ensures that they do not get lost. These pending messages are

included in the same dataset as the results of the task when it eventually finishes. This simple

model assumes only that a key refers to a specific object that remains fixed in each iteration.

It works for programs that require multiple map and reduce phases in each iteration, and it

is compatible with optimizations like the reduce-map operation.

Adapting a message passing MapReduce program to the asynchronous model requires

the programmer to be aware of three new parameters to datasets:

• async_start

• blocking_ratio,

• backlink.

The async_start parameter is a boolean indicating whether a dataset can start asyn-

chronously while some tasks in its input are still running. The blocking_ratio parameter

determines the minimum fraction of tasks that must be completed before any child dataset

can start asynchronously and defaults to 1 (fully synchronous). The backlink parameter

specifies an earlier dataset from which uncompleted tasks are inherited. New tasks are only

started for those keys whose corresponding tasks in the backlink dataset were completed

before any asynchronous execution of its children began.

Although implementation of this model in the runtime framework is not quite trivial,

its effect on the map and reduce functions is minimal. The semantics of the map function is

unchanged. It still updates an object, emits it, and emits messages. The reduce function,

however, is no longer guaranteed to be given the object at every iteration. It might receive
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only messages intended for the object. In iterations where the reduce function does not receive

the object, it can combine messages together, but these messages cannot be incorporated

into the object yet. Note that a program that works with Asynchronous MapReduce can also

run in traditional synchronous mode.

Particle swarm optimization (PSO), described in more detail in Section 8.5.1, is

an example of a simple iterative message passing algorithm that is naturally expressed in

MapReduce [71]. The map function updates the position of a particle, emits the updated

particle, and emits messages to neighboring particles. The reduce function aggregates the

messages from neighboring particles, and emits the particle with updated information about

its neighbors. Asynchronous parallel PSO is a variant of PSO which allows the evaluation of a

particle to proceed even if messages have not been received from all of its neighbors [55, 109].

The fully distributed variant of asynchronous parallel PSO makes its message passing nature

particularly clear [100].

Adapting a MapReduce implementation of parallel PSO to the asynchronous model

requires very few changes. The reduce function must be tolerant of input that includes several

messages but no complete particle; in this case it simply emits the best message. Assuming

that this case is correctly handled, the map and reduce functions are identical to those in

the synchronous MapReduce PSO implementation. The driver must be updated only to

include the asynchronous MapReduce parameters. The map dataset at each iteration must be

specified with a blocking_ratio below 1 and with a backlink pointing at the map dataset

from the previous iteration. The reduce dataset at each iteration must be specified with the

async_start parameter set to true. In the case that a single reduce-map dataset is used, it

must be given all of these options.

Figure 8.4 shows the improved efficiency of Asynchronous MapReduce compared to

synchronous MapReduce for tasks with variable execution times. In synchronous MapReduce,

all tasks in an iteration start at the same time, which is limited by the end time of the slowest

task in the previous iteration. In Asynchronous MapReduce, each task can start as soon
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Figure 8.4: Actual task execution traces for PSO with synchronous and Asynchronous
MapReduce. The horizontal axis is measured in seconds.
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as the corresponding task from the previous iteration completes. Also note that the time

between tasks is slightly less in asynchronous MapReduce, presumably due to the load on

the master and the traffic on the network being less bursty.

8.5 Experimental Results

Although the approaches described in this paper are applicable to any MapReduce implemen-

tation, we evaluate their effects using the Mrs [70] framework. Experiments are performed

on two clusters: a 2560-core cluster of 320 nodes, each with two quad-core 2.8 GHz Intel

Nehalem processors and 24 GB of memory, and a 150-core cluster of 25 nodes, each with a

6-core 3.2 GHz AMD Phenom II X6 1090T processor with 16 GB of RAM, We run Mrs with

and without various techniques enabled, compare the average time per iteration, and measure

the average parallel efficiency per iteration. Parallel efficiency is the speedup per processor,

relative to the fastest serial algorithm [40], for which we use typical serial implementations.

8.5.1 Synchronous MapReduce

In addition to the serial baseline, we compare with a baseline parallel configuration. This

configuration uses redundant storage and convergence checks in serial every iteration, as is

common in most MapReduce frameworks, but it also performs some optimizations, such as

locality-aware scheduling, which are unavailable in some frameworks.

Although most users will wish to use redundant storage and perform convergence

checks, these do not need to be run every iteration. Even if the occasional iteration cannot

take advantage of the improved performance, the majority of iterations are accelerated.

Section 8.5.1 describes particle swarm optimization (PSO) and shows the parallel efficiency

of parallel PSO in MapReduce with the cumulative effects of direct communication, con-

current convergence checks, disabled convergence checks, and combined reduce-map tasks.

Section 8.5.1 describes the EM algorithm and shows similar cumulative improvements.
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Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an empirical function optimization algorithm inspired

by simulations of flocking behaviors in birds and insects [19, 54]. The algorithm simulates the

motion of a set of interacting particles within a multidimensional space. At each iteration,

a particle moves and evaluates the objective function at its new position. A particle is

drawn toward the best value it has seen and the best value that any of its neighbors has

seen. PSO can be naturally expressed as a MapReduce program, with the map function

performing motion simulation and evaluation of the objective function and the reduce function

calculating the neighborhood best by combining the updated particle with messages from its

neighbors [71]. For computationally inexpensive objective functions, task granularity is too

fine if each map task operates on a single particle. In this case, a swarm can be divided into

several subswarms or islands, and each map task operates on several iterations of a subswarm

of particles [93, 99].

Listing 8.3 is an implementation of PSO using a generator-callback API as in Listing 8.2

from Section 8.3.3.

We find significant performance improvements for PSO in MapReduce. We use PSO

with subswarms of 5 particles applied to the 250 dimensional Rosenbrock function [105]. Each

subswarm runs for 50 “subiterations” in each map task. A baseline serial implementation

of PSO takes an average of 0.26 seconds to simulate 5 particles for 50 iterations. Note

that unlike the parallel implementation, this serial baseline does not serialize the state of

particles between iterations. Combining reduce and map operations into a single reduce-map

operation significantly reduces the overhead of assigning tasks. With separate reduce and

map operations, the average time per iteration is 0.79 seconds. With a combined reduce-map

operation, the average time per iteration drops to 0.55 seconds. This represents a reduction

of 30.7% in each iteration.

Even a most inefficient MapReduce implementation would be able to provide reasonable

parallel efficiency for a large enough problem size, but features that take into account the
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Listing 8.3 PSO program using a generator-callback MapReduce API.

def run ( s e l f , job ) :
job . d e f a u l t r e d u c e t a s k s = NUM PARTICLES
job . d e f a u l t r e d u c e s p l i t s = NUM PARTICLES
s e l f . ch e ck da ta s e t s = set ( )
IterativeMR . run ( s e l f , job )

def producer ( s e l f , job , i t e r a t i o n ) :
i f i t e r a t i o n == 0 :

kvpa i r s = [ ]
for i in range (NUM PARTICLES) :

kvpa i r s . append ( i , ’ ’ )
s t a r t d a t a = job . l o c a l d a t a ( kvpa i r s )
s e l f . swarm data = job . map data ( s t a r t da ta ,

s e l f . in i t map )
s t a r t d a t a . c l o s e ( )

e l i f i t e r a t i o n <= MAX ITERS:
tmp data = job . map data ( s e l f . swarm data ,

s e l f . pso map )
s e l f . swarm data . c l o s e ( )
s e l f . swarm data = job . reduce data ( tmp data ,

s e l f . p so reduce )
tmp data . c l o s e ( )
i f i t e r a t i o n % CHECK FREQ == 0 :

tmp data = job . map data ( s e l f . swarm data ,
s e l f . co l lapse map , s p l i t s =1)

check data = job . reduce data ( tmp data ,
s e l f . f i ndbe s t r educe , s p l i t s =1)

s e l f . ch e ck da ta s e t s . add ( check data )
else :

return [ ]

def consumer ( s e l f , da ta se t ) :
i f datase t in s e l f . ch e ck da ta s e t s :

s e l f . ch e ck da ta s e t s . remove ( datase t )
datase t . f e t c h a l l ( )
s e l f . output ( datase t . data ( ) )
i f s e l f . converged ( datase t . data ( ) ) :

return False
return True
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Figure 8.5: Parallel Efficiency (per iteration) of PSO in MapReduce with a sequence of
cumulative optimizations. The x-axis represents the problem size (the number of subiterations
in each map task). “Redundant storage” represents the baseline performance, with all data
stored to a redundant filesystem and with convergence checks occurring after each iteration.
“No redundant storage” shows performance for iterations with data communicated directly
between processors. “Concurrent checks” shows further improvements when the convergence
check is performed alongside the following iteration’s work. “Rare checks” avoids unnecessarily
frequent convergence checks. Finally, “reduce-map tasks” agglomerates each pair of reduce
and map tasks into a single reduce-map task.

nature of iterative algorithms are able to extend the range of reasonable performance to more

modestly sized problems. Figure 8.5 demonstrates the benefits of several techniques with

respect to the problem size, which in the case of PSO is the number of subiterations performed

by each subswarm within each map task. Note that the improvements are cumulative and

optional. Though the figure only shows the performance of a reduce-map task in conjunction

with direct communication, a configuration using redundant storage would still benefit from

using combined reduce-map tasks. Furthermore, a program need not be equally efficient in

each iteration. For example, even if redundant storage and convergence checks are performed

occasionally, the majority of iterations can benefit from these optimizations. In MapReduce

implementations that make redundant storage optional, a program only pays for the level of

redundancy it needs.
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Expectation Maximization

Expectation Maximization (EM) is an iterative algorithm commonly used to optimize param-

eters of finite mixture models in order to maximize the likelihood of the observed data [32].

Specifically, we apply the algorithm to a mixture of multinomials model in the context of

clustering text documents [74, 111]. For each multinomial component in the model, we must

maintain vectors with the same dimensionality as the number of features, which can be large.

This greatly increases the communication cost when running in parallel, making efficiency

difficult to obtain. Other mixture models, such as mixture of Gaussians, have much smaller

parameter sizes, and have been parallelized successfully with the EM algorithm [57, 69]. We

choose this particular model because it is inherently difficult to parallelize. With redundant

storage and convergence checks at every iteration, performance was abysmal. However, the

suggested improvements give much better parallel efficiency.

A single iteration of the EM algorithm consists of two steps. For our model, the

expectation step (E-step) uses the current state of the parameters to estimate partial label

assignments for the data. This is followed by the maximization step (M-step), which re-

estimates the parameters using those partial label assignments. This algorithm is guaranteed

to never decrease the log-likelihood of the data and will always converge to a local maximum.

EM for mixture of multinomials can be expressed as a two-stage iterative MapReduce

program. The first stage of the program performs the E-step. Each map processes a shard

of the documents and computes a posterior distribution given the current state parameters.

The reduce then combines the posterior into partial counts for each of the labels. The second

stage of the program re-estimates the parameters of the model. The map task performs

normalization for each of the labels, and then the reduce task combines the normalized counts

to produce the updated model parameters.

We tested the MapReduce implementation of EM with the 20 newsgroups dataset,

a common benchmark for document clustering [58]. After preprocessing, the dataset had a

vocabulary size of approximately 80,000 unique words. As a final step, we applied random
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Table 8.1: Parallel efficiency per iteration of EM for various feature set sizes. As expected,
higher feature set sizes lead to lower parallel efficiency, but removing redundant storage
significantly helps. Further gains are realized by reducing convergence checks and using the
reduce-map operation.

Optimization 80 252 8000 25298
Reduce-map tasks 0.411 0.357 0.277 0.193
Rare checks 0.362 0.314 0.253 0.18
Redundant storage 0.013 0.013 0.013 0.012

feature hashing, which maps each unique word to a predefined number of bins. Although

simple, this type of feature selection has been shown to perform surprisingly well [38, 116],

but other more principled dimensionality reductions such as latent dirichlet allocation [16]

could also be used to reduce the feature set size.

Table 8.1 shows the efficiency of parallel EM for various reasonable feature set sizes.

Note that as the feature set increases in size, the amount of communication increases at a

faster rate than the amount of computation which must be performed for each task, which

decreases parallel efficiency. In fact, if one were to do no feature engineering whatsoever and

use all 80,000 words as features, the cost of writing this large number of features is so high,

that when using a distributed filesystem, the serial implementation of EM runs nearly twice

as fast as the parallel version. However, that is not the point here, rather we show that in this

application, for any reasonable number of features, eliminating the use of redundant storage

significantly improves performance. In addition, rare convergence checks in combination

with our reduce-map operation brought runtime down from an average of 83.93 seconds per

iteration to only 3.41 seconds, a 95.9% improvement.

8.5.2 Asynchronous MapReduce

The asynchronous programming model of Section 8.4 allows asynchronous parallel PSO [55,

109] to be expressed in MapReduce. This variant of PSO is particularly well-suited for

functions whose execution time has high variance, with heterogeneous processors, and in
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Figure 8.6: The average throughput (in tasks per second) for synchronous and asynchronous
PSO. The number of subiterations per map task vary, with an average of 50 and a standard
deviation ranging from 0 to 20. Throughput of the asynchronous implementation is unaffected
by task variance and is better even when there is no variance.

distributed environments [100]. To evaluate the behavior of asynchronous parallel PSO in

MapReduce, we vary the number of subiterations performed in each map task.

With a varying number of subiterations, asynchronous parallel PSO is distinctly

faster than standard parallel PSO. We draw the number of subiterations from a normal

distribution with a mean of 50 and a standard deviation ranging from 0 (no variability) to

20. Figure 8.6 shows the difference in throughput between synchronous and asynchronous

PSO in MapReduce as the standard deviation varies. The throughput of asynchronous PSO

is fairly constant at around 115 tasks per second. Synchronous PSO, on the other hand,

slows as the standard deviation increases, with a throughput of 73 tasks per second when the

standard deviation is 20.

Even with small or no standard deviation, asynchronous parallel PSO outperforms

the synchronous variant. With a standard deviation of 5, synchronous PSO with combined

reduce-map tasks requires an average of 0.58 seconds per iteration, while asynchronous PSO

requires only 0.44 seconds. Note that reduce-map operations provide a similar benefit with

variance as it does without variance: with separated reduce and map tasks, the time per

iteration for synchronous PSO rises to 0.82 seconds.
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Figure 8.7: The average throughput (in tasks per second) for synchronous and asynchronous
PSO with respect to the number of processors. The number of subswarms is equal to the
number of processors, and the number of subiterations is 1000.

We speculate that the advantage of Asynchronous MapReduce in the case where task

times are uniform is due to a more even load on the master. With synchronous MapReduce, as

soon as the last task in a dataset completes, the master is suddenly able to make assignments

to each of the slaves. This creates a bottleneck, not only in the master as it makes assignments,

but also in the slaves as they all start communicating at the same time. In Asynchronous

MapReduce, the master has no such bottleneck because it can make an assignment as soon as

a single task completes, without waiting for all other tasks in the dataset to finish. Figure 8.7

explores this phenomenon and shows that the effect increases with the number of processors.

8.6 Conclusion

This paper takes the following approaches to make Mrs more appropriate for computationally

intensive iterative algorithms:

• Checkpointing: we combine direct task-to-task communication with strategic use of a

distributed filesystem to improve performance while preserving fault tolerance.
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• The reduce-map operation: this operation is a combination of the reduce and map

tasks which span successive iterations. It eliminates unnecessary communication and

scheduling latency.

• Fully asynchronous operation: iterative algorithms which are naturally expressed in

terms of asynchronous message passing can now be easily expressed and efficiently run.

These approaches have been previously shown to improve performance of parallelized

iterative algorithms, and we have shown that they do the same in Mrs. Further, we add an

additional approach novel to our implementation:

• A generator-callback model for task management: This model provides for both greater

flexibility in the scheduling of tasks and better supports operations typically found in

iterative programs, such as convergence checking being scheduled less frequently and

outside of the regular MapReduce iterations.

These approaches improve the efficiency of Mrs MapReduce for all iterative algorithms

but also makes it feasible for a wide range of applications where its overhead was previously

too high to be practical.
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Conclusions

We now conclude, summarizing the major contributions of this dissertation, as well as

suggesting potential avenues of future work in the space of fine-grained topic modeling.
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Chapter 9

Conclusions

We have set out to show that fine-grained topic modeling is not only possible with

anchor-based topic models, but enables new topic-based applications which were not feasible

using traditional probabilistic topic modeling. We first review our contributions towards this

aim in this dissertation in Section 9.1, and then in Section 9.2 we discuss possible avenues of

future research using this work.

9.1 Contributions

We view the problem of fine-grained topic modeling as two fold: improving the quality of the

topics generated by anchor-based topic models, and improving the quality of the local topic

assignments. In Part I, we propose two ways to ensure that the anchors for each topic better

reflect the underlying data. In Part II, we determine how to evaluate local topic quality,

and explore topic assignment strategies for fine-grained topic models. Using the results from

the previous two parts, in Part III we apply fine-grained topic modeling to the problem of

automatic cross-reference generation. Finally, in Part IV we explore the parallelization of

anchor-based topic models, demonstrating significant speedup on both topic recovery and

cooccurrence matrix construction.

Our main contribution towards improved anchor selection is the concept of tandem

anchoring. Ordinarily, each topic is anchored by a single word which uniquely identifies the

topic. However, with tandem anchors, we are able to create anchors out of multiple words

which jointly express a concept. This allows us to create topics which are anchored by entire

133



www.manaraa.com

documents, which in turn allows us to create more nuanced and refined topics compared to

the default single-word anchors from the Gram-Schmidt process.

In addition to tandem anchoring, we also develop the technique of labeled anchors,

which allows the anchor selection process and topic recovery procedure to be influenced by

document metadata values. This is useful for topic-based document classification, but also in

cases where fine-grained topics can be improved by incorporating information from metadata.

We also make efforts towards improving the accuracy of token-level topic assignments.

Our main contribution in this space was to develop the word topic matching task, which

allows us to get user input on local topic model quality. We use this task to develop topic

consistency, a metric which measures how often a model switches between topics, and we

demonstrate that topic consistency correlates well with human evaluations of the quality

of topic assignments. Using this result, we are able to explore topic assignment strategies.

We report a mixed result on this front, with iterated conditional modes with a per-word

initialization yielding the most consistent topic assignments, while mean field variational

inference produces the best topic-based classification results.

Using these results, we are able to demonstrate that fine-grained topic modeling can

be applied to the task of automatic cross-reference generation. This system predicts cross-

references with sufficient precision to dramatically lower the cost of producing cross-reference

resources for new texts. We note that this cost-savings is not possible with traditional

coarse-grained topic modeling.

9.2 Future Work

Having validated our thesis statement that fine-grained topic modeling is not only possible

using anchor-based methods, but demonstrated that it can be applied to the problem of

cross-reference generation, we suggest the future work in the space of fine-grained topic

modeling could focus on exploring other topic-based applications for which coarse-grained

topic modeling is inadequate.
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One such application is the problem of automatic redaction, in which sensitive phrases

or sentences are marked as confidential. Topic-based classification can classify entire doc-

uments [96], but with coarse-grained topics, it can be difficult to have a small number of

topics cover every aspect of sensitive subjects which should be redacted. We submit that

with fine-grained topic modeling, a topic-based approach might be suitable for this problem.

A related problem which has received a lot of attention in recent literature is aspect

level sentiment classification [98]. Rather than trying to identify overall sentiment polarity,

aspect level sentiment classification attempts to identify sentiment with respect to a specific

context. For example, in the sentence “we loved the atmosphere, the food, and the service,

but it was bit pricey”, the overall sentiment might be positive, even though for the aspect of

price the sentiment is more negative. We believe that a topic-based solution using labeled

anchors and fine-grained topics is a promising approach to solving this problem.

These are just two potential applications for fine-grained topic modeling, but undoubt-

edly there are many other areas that this work could improve. Furthermore, future work

into additional applications can serve as a springboard spurring further development of topic

modeling research.
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Appendix A

Relationship Between Topic Models and Word Embedding Models

On a surface level, topic modeling and word embedding models are very closely related. 

Both types of algorithm seek to explain the cooccurrences between words in a low-dimension 

space. There are however, differences in how the algorithms are trained. At the core, topic 

modeling is about documents, and word embeddings are about words.

More specifically, word embedding models explain words by their contexts. For 

example, using the popular Word2Vec [75] family of word embeddings with a continuous bag 

of words representation of the data, each word w is modeled as

p(w|w1, w2, ..., wn) ∝ exp(vw · (
1

n

n∑
i

vwi
)) (A.1)

where wi is the ith word of the context of w, and vw gives the vector representation of word

w. Assuming that we have sufficient data to estimate the left-hand side of Equation A.1, the

problem of finding the vectors v on the right-hand side is essentially a non-convex optimization

problem which can be solved with the aid of the negative sampling trick introduced by Mikolov

et al. [75].

There are many variants of word embedding models, including the count-based GloVe

model [90], but the unifying characteristic is that they all seek to represent words in vector-

space based on the contexts they appear in. A key point to notice is that these algorithms

ignore documents and document boundaries.

In contrast, topic modeling is based on word cooccurrences within documents. Topic

models typically assume that each document has a distribution of topics, and that the words
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of the document come from those topics. In other words, each word w is modeled as

p(w|d) =
K∑
z

p(w|z)p(z|d) (A.2)

where z is one of K topics, and d is the document containing w. While the specific distributions

differ depending on the model, the important thing is that the inference of the topics, or the

topic-word distributions p(w|z) depends on cooccurrences between words within documents.

If the V word types of a corpus are represented in a V -dimensional cooccurrence

space, both word embeddings and topic models seek to compress these representations into

a K-dimensional space which preserves pairwise distances and for which K � V . In fact,

the anchor word algorithm [6] does this explicitly, using non-negative matrix factorization to

compute a V ×K word-topic matrix which represents this projection. However, the results

of the two classes of algorithm are quite different.

With word embeddings, the dimensions of the compressed K-dimensional space

typically represent the meanings of words. It is for this reason that we can use word

embeddings to solve analogies using simple linear relationships between vector representations

of words. For example, if find the word w which minimizes

‖vw − vking + vman − vwoman‖2 (A.3)

many word embeddings would result in the word “queen”, which is an appropriate answer

giving us the analogy man:woman::king:queen.

Recent work in word embeddings has used this linear algebraic structure of meaning

captured by word embeddings for word sense induction [7]. This work sets up an optimization

problem in which words are decomposed into ‘discourse atoms’, which are vectors in the word

embedding space. In many respects, these discourse atoms are very similar to topics in that

cosine distance between word vectors and the atoms produces meaningful distributions over

words.
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Figure A.1: Some discourse atoms and their nearest 9 words. Each atom is labeled with an
arbitrary id number, and the word embeddings are trained on 3 billion tokens of Wikipedia
data. Figure taken from Arora et al. [7].

Figure A.1, taken from Arora et al. [7], shows the result of training a word embedding

on 3 billion tokens of Wikipedia data and using this method of computing discourse atoms.

The closest 9 words from each atom are shown. Note that the words associated with each

atom are based on meaning. Because there are 2000 such atoms, the meanings associated

with each atom can be fairly nuanced and subtle.

For example, atom 825 includes words such as ‘instagram’, ‘twitter’ and ‘facebook’.

On the surface, this may seem like a topic from a typical topic model dealing with social

media. Indeed, if a corpus had multiple documents discussing various social media platforms

in such a way that these word frequently cooccurred within the same documents, such a topic

would be possible. However, this is not how this particular discourse atom came to be.

Instead, this discourse atom was recovered due to the fact that these words often

appear in the similar contexts. For example, for the context ‘I posted the photo on ’, the

terms for these social media platforms are largely interchangeable, and so word embeddings

minimize the distance between the vectors for these words.

In contrast, consider the topics in Figure A.2 as represented by their top n most

probable words. These topics are produced using the anchor-words algorithm [6] on the

Twenty Newsgroups dataset1. Note that unlike the atoms in Figure A.1, the topics of

1These topics are reused from Chapter 2, which deals with tandem anchoring. However, these are topics
produced using single word anchors.
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alt.atheism talk.religion.misc rec.baseball rec.hockey
evolution religion baseball hockey
theory god games team
science government players play
faith state word games
quote jesus teams season
facts israel car players

Figure A.2: Some topics represented by the 6 most probable words in a topic. We label each
topic using the newsgroup the topic is most heavily associated with. The topics are learned
using the anchor-word algorithm on the Twenty Newsgroups dataset.

Figure A.2 do not focus on the meaning of words, but instead capture themes or concepts

that appear in the documents of the Twenty Newsgroups dataset.

For example, consider topic associated with the baseball newsgroup. The words of

this topic, such as ‘teams’ and ‘games’ and ‘baseball’ are all clearly related and used together

frequently as part of the discussion about the concept of baseball. However, these words

do not necessarily have the same meaning, nor are the necessarily interchangeable within

the same contexts. This topic is recovered not because of similar meaning, but because of

frequent cooccurence within documents discussing baseball.

Besides the difference in the interpretation of the compressed representation of words

in word embeddings and topic modeling, the document-based view of words taken by topic

modeling allows us to produce topic assignments for individual documents and word, while

word embeddings only provide the mapping of words to meaning. These topic assignments

allow us to summarize the topical content of documents, without paying attention to the

meaning of the individual words. Word embeddings do essentially the opposite, focusing on

the meaning of each individual word in isolation.

Because of these differences, topic models and word embeddings are used for different

tasks. Essentially, topic models are about documents. Topic modeling seeks to remove

individual words from the view of documents, and instead lets us summarize entire documents

by their topical content. Word embeddings on the other hand are about words. Rather than
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replace words with a high-level topic, we replace each word with a vector which indicates a

specific meaning for each individual word.

The applications of these two types of models are therefore very different. For example,

in natural language processing word embeddings are commonly used as the first layer in

neural models designed for tasks like machine translation. Because topic model output

actually conflates words with different meanings based on document cooccurrences, topic

models would likely be a poor word representation for these tasks. On the other hand, for

tasks such as topic-based cross-referencing (see Chapter 6), we need to know what documents

are about regardless of the meaning of the individual words used, so word embeddings would

likely not be as useful as topic models in this case.

With these differences in mind, we note that this dissertation is concerned with topic

modeling and applications of fine-grained topic models. Consequently, while the literature

regarding word embeddings is rich, this dissertation avoids the discussion of word embeddings,

as it is not strictly comparable or applicable line of related work.
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Appendix B

Examples of Biblical Cross-References

In this appendix we give examples of cross-references for the English Standard Version 

of the Bible discovered by the system described in Chapter 6. The rank of each reference is 

determined using a model with 3,000 tandem anchors and using cosine distance to compare 

document-topic vectors. We show verse pairs from various rankings to give the reader a sense 

of the types of cross-references found by our system.

The first column indicates how the model ranked a particular verse pair. The second 

column indicates whether the predicted cross-reference was valid according to the Treasury 

of Scripture Knowledge, Enhanced. The third and fourth column indicates whether the 

predicted cross-reference was valid according to OpenBible+0 and OpenBible+5 respectively. 

For these columns, an ’X’ indicates that the verse pair was valid under the cross-reference 

dataset, while a ‘-’ indicates that the verse pair was not found in the given cross-reference 

dataset. We then give verse and verse text of the source verse, and finally the verse and verse 

text of the target verse.

141



www.manaraa.com

Rank TSKE OB+0 OB+5 Source Target

4 - - - 1Sam.30.30 in Hormah, in Bor-

ashan, in Athach,

Josh.15.30 Eltolad, Chesil,

Hormah,

21 X - - Gen.11.12 When Arpachshad

had lived 35 years, he fathered

Shelah.

Gen.10.24 Arpachshad fa-

thered Shelah; and Shelah

fathered Eber.

23 X X - Gen.10.24 Arpachshad fa-

thered Shelah; and Shelah

fathered Eber.

Gen.11.12 When Arpachshad

had lived 35 years, he fathered

Shelah.

676 X X X Prov.16.25 There is a way that

seems right to a man, but its

end is the way to death.

Prov.14.12 There is a way that

seems right to a man, but its

end is the way to death.

1000 - - - Gen.36.37 Samlah died, and

Shaul of Rehoboth on the Eu-

phrates reigned in his place.

Gen.36.36 Hadad died, and

Samlah of Masrekah reigned in

his place.

1007 X - - Job.25.1 Then Bildad the

Shuhite answered and said:

Job.18.1 Then Bildad the

Shuhite answered and said:

1011 X X - 2Kgs.25.20 And Nebuzaradan

the captain of the guard took

them and brought them to the

king of Babylon at Riblah.

Jer.52.26 And Nebuzaradan

the captain of the guard took

them and brought them to the

king of Babylon at Riblah.

1128 X X X Matt.6.27 And which of you by

being anxious can add a single

hour to his span of life?

Luke.12.25 And which of you

by being anxious can add a sin-

gle hour to his span of life?

2000 - - - 1Chr.8.5 Gera, Shephuphan,

and Huram.

1Chr.8.7 Naaman, Ahijah, and

Gera, that is, Heglam, who fa-

thered Uzza and Ahihud.
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2005 X - - Rom.12.4 For as in one body

we have many members, and

the members do not all have

the same function,

Rom.12.5 so we, though many,

are one body in Christ, and in-

dividually members one of an-

other.

2006 X X - Eph.5.30 because we are mem-

bers of his body.

Rom.12.5 so we, though many,

are one body in Christ, and in-

dividually members one of an-

other.

2021 X X X Ps.57.5 Be exalted, O God,

above the heavens! Let your

glory be over all the earth!

Ps.57.11 Be exalted, O God,

above the heavens! Let your

glory be over all the earth!

5000 - - - Exod.38.15 And so for the

other side. On both sides of

the gate of the court were hang-

ings of fifteen cubits, with their

three pillars and their three

bases.

Exod.27.15 On the other side

the hangings shall be fifteen

cubits, with their three pillars

and three bases.

5007 X - - Exod.39.2 He made the ephod

of gold, blue and purple and

scarlet yarns, and fine twined

linen.

Exod.28.5 They shall receive

gold, blue and purple and scar-

let yarns, and fine twined linen.

5011 X X - Neh.7.44 The singers: the sons

of Asaph, 148.

1Chr.25.2 Of the sons of As-

aph: Zaccur, Joseph, Netha-

niah, and Asharelah, sons of

Asaph, under the direction of

Asaph, who prophesied under

the direction of the king.
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5242 X X X Matt.12.30 Whoever is not

with me is against me, and

whoever does not gather with

me scatters.

Luke.11.23 Whoever is not

with me is against me, and

whoever does not gather with

me scatters.

10000 - - - Ezek.40.8 Then he measured

the vestibule of the gateway,

on the inside, one reed.

Ezek.42.17 He measured the

north side, 500 cubits by the

measuring reed all around.

10016 X - - Matt.13.7 Other seeds fell

among thorns, and the thorns

grew up and choked them.

Mark.4.7 Other seed fell among

thorns, and the thorns grew up

and choked it, and it yielded

no grain.

10017 X X - Mark.4.7 Other seed fell among

thorns, and the thorns grew up

and choked it, and it yielded

no grain.

Matt.13.7 Other seeds fell

among thorns, and the thorns

grew up and choked them.

10130 X X X Matt.25.23 His master said to

him, ‘Well done, good and

faithful servant. You have been

faithful over a little; I will set

you over much. Enter into the

joy of your master.’

Matt.25.21 His master said to

him, ‘Well done, good and

faithful servant.You have been

faithful over a little; I will set

you over much. Enter into the

joy of your master.’

20000 - - - Num.33.37 And they set out

from Kadesh and camped at

Mount Hor, on the edge of the

land of Edom.

Num.33.41 And they set out

from Mount Hor and camped

at Zalmonah.
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20016 X - - 2Chr.26.4 And he did what

was right in the eyes of

the Lord, according to all

that his father Amaziah had

done.

2Kgs.15.34 And he did what

was right in the eyes of the

Lord, according to all that

his father Uzziah had done.

20017 X X - 2Kgs.15.34 And he did what

was right in the eyes of the

Lord, according to all that

his father Uzziah had done.

2Chr.26.4 And he did what

was right in the eyes of

the Lord, according to all

that his father Amaziah had

done.

20578 X X X Eph.5.19 addressing one an-

other in psalms and hymns

and spiritual songs, singing

and making melody to the

Lord with your heart,

Col.3.16 Let the word of

Christ dwell in you richly,

teaching and admonishing

one another in all wisdom,

singing psalms and hymns

and spiritual songs, with

thankfulness in your hearts

to God.

110210- - - Prov.21.21 Whoever pur-

sues righteousness and kind-

ness will find life, righteous-

ness, and honor.

John.3.16 ”For God so loved

the world,that he gave his

only Son, that whoever be-

lieves in him should not per-

ish but have eternal life.
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110230X - - Luke.8.46 But Jesus said,

”Someone touched me, for

I perceive that power has

gone out from me.”

Mark.5.30 And Jesus, per-

ceiving in himself that

power had gone out from

him, immediately turned

about in the crowd and

said, ”Who touched my gar-

ments?”

110231X X - Mark.5.30 And Jesus, per-

ceiving in himself that

power had gone out from

him, immediately turned

about in the crowd and

said, ”Who touched my gar-

ments?”

Luke.8.46 But Jesus said,

”Someone touched me, for

I perceive that power has

gone out from me.”

111402X X X Luke.3.16 John answered

them all, saying, ”I baptize

you with water, but he who

is mightier than I is coming,

the strap of whose sandals

I am not worthy to untie.

He will baptize you with the

Holy Spirit and fire.

John.1.33 I myself did not

know him, but he who

sent me to baptize with

water said to me, ‘He on

whom you see the Spirit de-

scend and remain, this is he

who baptizes with the Holy

Spirit.’
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221230- - - Acts.13.31 and for many

days he appeared to those

who had come up with him

from Galilee to Jerusalem,

who are now his witnesses

to the people.

Prov.25.18 A man who

bears false witness against

his neighbor is like a war

club, or a sword, or a sharp

arrow.

221331X - - 2Chr.22.8 And when Jehu

was executing judgment on

the house of Ahab, he met

the princes of Judah and the

sons of Ahaziah’s brothers,

who attended Ahaziah, and

he killed them.

2Chr.22.9 He searched

for Ahaziah, and he was

captured while hiding

in Samaria, and he was

brought to Jehu and put to

death. They buried him, for

they said, ”He is the grand-

son of Jehoshaphat, who

sought the Lord with all his

heart.” And the house of

Ahaziah had no one able to

rule the kingdom.

221364X X - Hag.1.15 on the twenty-

fourth day of the month, in

the sixth month, in the sec-

ond year of Darius the king.

Hag.2.20 The word of the

Lord came a second time to

Haggai on the twenty-fourth

day of the month,
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221548X X X Jonah.1.17 And the Lord ap-

pointed a great fish to swal-

low up Jonah. And Jonah

was in the belly of the fish

three days and three nights.

Matt.12.40 For just as

Jonah was three days and

three nights in the belly of

the great fish, so will the Son

of Man be three days and

three nights in the heart of

the earth.

316739- - - Job.29.24 I smiled on them

when they had no confi-

dence, and the light of my

face they did not cast down.

Joel.2.6 Before them peoples

are in anguish; all faces grow

pale.

316772X - - Amos.4.5 offer a sacrifice of

thanksgiving of that which

is leavened, and proclaim

freewill offerings, publish

them; for so you love to do,

O people of Israel!” declares

the Lord God.

Lev.7.13 With the sacrifice

of his peace offerings for

thanksgiving he shall bring

his offering with loaves of

leavened bread.

316773X X - Lev.7.13 With the sacrifice

of his peace offerings for

thanksgiving he shall bring

his offering with loaves of

leavened bread.

Amos.4.5 offer a sacrifice of

thanksgiving of that which

is leavened, and proclaim

freewill offerings, publish

them; for so you love to do,

O people of Israel!” declares

the Lord God.
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317001X X X John.12.49 For I have not

spoken on my own author-

ity, but the Father who sent

me has himself given me

a commandment—what to

say and what to speak.

John.14.10 Do you not be-

lieve that I am in the Fa-

ther and the Father is in me?

The words that I say to you I

do not speak on my own au-

thority, but the Father who

dwells in me does his works.

536739- - - Num.9.19 Even when the

cloud continued over the

tabernacle many days, the

people of Israel kept the

charge of the Lord and did

not set out.

Ezek.44.17 When they en-

ter the gates of the inner

court, they shall wear linen

garments. They shall have

nothing of wool on them,

while they minister at the

gates of the inner court, and

within.

536757X - - Mark.12.26 And as for the

dead being raised, have you

not read in the book of

Moses, in the passage about

the bush, how God spoke to

him, saying, ‘I am the God

of Abraham, and the God

of Isaac, and the God of Ja-

cob’?

Exod.3.6 And he said, ”I

am the God of your father,

the God of Abraham, the

God of Isaac, and the God

of Jacob.” And Moses hid

his face, for he was afraid to

look at God.
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536774 X X - 2Sam.5.12 And David knew

that the Lord had estab-

lished him king over Israel,

and that he had exalted his

kingdom for the sake of his

people Israel.

1Kgs.10.9 Blessed be the

Lord your God, who has de-

lighted in you and set you

on the throne of Israel! Be-

cause the Lord loved Israel

forever, he has made you

king, that you may execute

justice and righteousness.”

537418 X X X Mark.8.18 Having eyes do

you not see, and having

ears do you not hear? And

do you not remember?

Ezek.12.2 ”Son of man, you

dwell in the midst of a rebel-

lious house, who have eyes

to see, but see not, who

have ears to hear, but hear

not, for they are a rebellious

house.

1536739- - - 2Chr.5.10 There was noth-

ing in the ark except the

two tablets that Moses put

there at Horeb, where the

Lord made a covenant with

the people of Israel, when

they came out of Egypt.

Josh.9.11 So our elders and

all the inhabitants of our

country said to us, ‘Take

provisions in your hand for

the journey and go to meet

them and say to them, ”We

are your servants. Come

now, make a covenant with

us.”’
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1536828 X - - Judg.1.30 Zebulun did not

drive out the inhabitants of

Kitron, or the inhabitants

of Nahalol, so the Canaan-

ites lived among them, but

became subject to forced

labor.

Deut.20.11 And if it re-

sponds to you peaceably

and it opens to you, then

all the people who are

found in it shall do forced

labor for you and shall

serve you.

1536829 X X - Deut.20.11 And if it re-

sponds to you peaceably

and it opens to you, then

all the people who are

found in it shall do forced

labor for you and shall

serve you.

Judg.1.30 Zebulun did not

drive out the inhabitants of

Kitron, or the inhabitants

of Nahalol, so the Canaan-

ites lived among them, but

became subject to forced

labor.

1537240 X X X Prov.21.19 It is better to

live in a desert land than

with a quarrelsome and

fretful woman.

Prov.21.9 It is better to live

in a corner of the housetop

than in a house shared with

a quarrelsome wife.

10234713- - - Num.2.33 But the Levites

were not listed among the

people of Israel, as the Lord

commanded Moses.

2Chr.19.7 Now then, let the

fear of the Lord be upon

you. Be careful what you

do, for there is no injustice

with the Lord our God, or

partiality or taking bribes.”
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10234763X - - Jer.50.2 ”Declare among

the nations and proclaim,

set up a banner and pro-

claim, conceal it not, and

say: ‘Babylon is taken, Bel

is put to shame, Merodach

is dismayed. Her images

are put to shame, her idols

are dismayed.’

Jer.50.38 A drought

against her waters, that

they may be dried up! For

it is a land of images, and

they are mad over idols.

10234824X X - Prov.19.11 Good sense

makes one slow to anger,

and it is his glory to

overlook an offense.

Matt.5.44 But I say to you,

Love your enemies and pray

for those who persecute

you,

10243421X X X Deut.12.20 ”When the

Lord your God enlarges

your territory, as he has

promised you, and you say,

‘I will eat meat,’ because

you crave meat, you may

eat meat whenever you

desire.

Deut.19.8 And if the Lord

your God enlarges your ter-

ritory, as he has sworn

to your fathers, and gives

you all the land that he

promised to give to your fa-

thers—
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